Abstract. The role ofMycoplasma pneumoniaegenerated superoxide and hydrogen peroxide in inducing host cell injury was studied in normal and trisomy 21 human cells. As a result of M. pneumoniae infection, catalase activity in infected normal skin fibroblasts and ciliated epithelial cells decreased by 74-77% as compared with uninfected controls. Addition of superoxide dismutase to the infected cultured cells totally prevented the inhibition whereas addition of catalase or catalytically inactivated superoxide dismutase had no protective effect. Trisomy 21 erythrocytes and cultured skin fibroblasts in which CuZn-superoxide dismutase content is 50% greater than in normal cells were infected by M. pneumoniae. The inhibition of catalase activity in these cells was 7-33% and 0-20.5%, respectively, as compared with 65-72% and 48-68% inhibition in normal infected controls. Following M. pneumoniae infection, the levels of malonyldialdehyde, an indicator for membrane lipid peroxidation were raised in trisomy 21 cultured fibroblasts by 10-32% while in normal cells malonyldialdehyde increased by 140-870%. Externally added superoxide dismutase, but not catalase, reduced the extent of lipid peroxidation in normal infected cells. Lactate dehydrogenase release from normal infected cells was time correlated with the increase in their malonyldialdehyde formation. It is suggested that superoxide generated during M. pneumoniae infection is involved in the inhibition of host cell catalase activity. The inactivation of this cellular antioxReceivedfor publication 9 August 1983 and in revisedform 24 October 1983. idative defense mechanism results in progressive oxidative damage to the M. pneumoniae-infected cells.
Evidence is presented that both X chromosomes are genetically active in clonal cultures of undifferentiated female mouse teratocarcinoma stem cells derived from a spontaneous ovarian tumour. As the cells differentiate in vitro one of the X chromosomes becomes inactivated.
Attempts were made to evaluate 709 children (324 boys and 385 girls) who had been exposed long-term to different doses of radiation during and after the Chernobyl accident and had moved to Israel between 1990 and 1994. Upon arrival, all of them underwent a check-up for most common clinical disorders and were then divided into three groups according to their residences (distance from the reactor) and the level of irradiation exposure: no radiation, <5 Ci/m2, and >5 Ci/m2, respectively. Blood serum analyses for total carotenoids, retinol, alpha-tocopherol and oxidized conjugated dienes in 262 of the children showed increased HPLC levels of conjugated dienes, indicating increased levels of oxidation of in vivo blood lipids in children from the contaminated areas. The levels were higher in girls than in boys. Some 57 boys and 42 girls were given a basal diet with a diurnal supplementation of 40 mg natural 9-cis and all-trans equal isomer mixture beta-carotene in a capsulated powder form of the alga Dunaliella bardawil, for a period of 3 months. Blood serum analyses were regularly conducted before supplementation to determine the baseline effect of radiation exposure to the children, after 1 and 3 months of natural beta-carotene supplementation. After supplementation, the levels of the oxidized conjugated dienes decreased in the children's sera without any significant changes in the level of total carotenoids, retinol or alpha-tocopherol. Other common blood biochemicals were within the normal range for all tests and no statistical differences before or after supplementation of beta-carotene were noted. High pressure liquid chromatography (HPLC) analyses for carotenoids in the blood detected mainly oxycarotenoids, and to a lesser extent, all-trans beta-carotene, alpha-carotene, but not 9-cis beta-carotene. The results suggest that irradiation increases the susceptibility of lipids to oxidation in the Chernobyl children and that natural beta-carotene may act as an in vivo lipophilic antioxidant or radioprotector.
Neuropathic pain is frequently driven by ectopic impulse discharge (ectopia) generated in injured peripheral afferent neurons. Observations in the spinal nerve ligation (SNL) model in rats suggest that cell bodies in the dorsal root ganglion (DRG) contribute 3 times more to the ectopic barrage than the site of nerve injury (neuroma). The DRG is therefore a prime interventional target for pain control. Since DRG ectopia is selectively suppressed with lidocaine at concentrations too low to block axonal impulse propagation, we asked whether targeted delivery of dilute lidocaine to the L5 DRG can relieve L5 SNL-induced tactile allodynia without blocking normal sensation or motor function. Results showed that intraforaminal injection of 10-µL bolus doses of 0.2% lidocaine suppressed allodynia transiently, while sustained infusion over 2 weeks using osmotic minipumps suppressed it for the duration of the infusion. Bolus injections of morphine or fentanyl were ineffective. Lidocaine applied to the cut spinal nerve end or the L4 DRG did not affect allodynia, suggesting that discharge originating in the neuroma and in neighboring “uninjured” afferents makes at best a minor contribution. Spike electrogenesis in the DRG is apparently the primary driver of tactile allodynia in the SNL model of neuropathic pain, and it can be controlled selectively by superfusing the relevant DRG(s) with nonblocking concentrations of lidocaine. This approach has potential clinical application in conditions such as postherpetic neuralgia and phantom limb pain in which one or only a few identifiable ganglia are implicated as pain drivers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.