The work is devoted to the study of the water flow created by a pump in a cuvette by multicolor particle image velocimetry. Multicolor particle image velocimetry method is another modification of the particle image velocimetry. The main difference between this method and other modifications is that not one laser plane is used as probing radiation, but several with different wavelengths. Such modernization makes it possible to obtain velocity vector fields simultaneously in several laser planes. The paper describes an algorithm for carrying out measurements using multicolor particle image velocimetry and processing the recorded data. An experimental setup has been developed and a series of experiments has been carried out, as a result of which the structure of the flow under study has been visualized, vector velocity fields in three laser planes have been obtained.
The work is devoted to the study of the water flow created by a pump in a cuvette by multicolor particle image velocimetry. Multicolor particle image velocimetry method is another modification of the particle image velocimetry. The main difference between this method and other modifications is that not one laser plane is used as probing radiation, but several with different wavelengths. Such modernization makes it possible to obtain velocity vector fields simultaneously in several laser planes. The paper describes an algorithm for carrying out measurements using multicolor particle image velocimetry and processing the recorded data. An experimental setup has been developed and a series of experiments has been carried out, as a result of which the structure of the flow under study has been visualized, vector velocity fields in three laser planes have been obtained.
The aim of the study is to eliminate the influence of the turbulence model on the photographed images. This problem is solved by computer processing of images containing such distortions. In the course of the work, images with simulated turbulent distortions were obtained, and they were also post-processed using cascade filters.
The paper is concerned with the obtaining three-dimensional velocity fields of a gas or liquid flow based on the available cross-sections of this flow. The descriptions of the main optical methods for studying flows are designed to construct a cross-section of the observed process, but it would be much more informative to obtain information in the visualization not in the cross-section of a volume, but in this volume itself. The paper deals with obtaining three-dimensional flow velocity fields using various approximation methods. The method of estimating the most suitable approximating function is also given. The determination of the optimal type of approximation for the reconstruction of the three-dimensional velocity field was tested on an artificially created vortex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.