The formation and evolution of the plasma sheets resulting from the plasma compression in diversified three-dimensional (3D) magnetic configurations with singular X lines are reported on. The research was focused on the correlation between the structure of a plasma sheet and the topology of the initial 3D magnetic configuration, especially on the impact of the guide field aligned with the X line. It has been demonstrated experimentally that plasma compression and formation of extended plasma sheets can take place in configurations with the X lines in the presence of a strong guide field. The electron density distributions in the plasma sheets were found to be rather sensitive to the magnetic field topology. The experiments revealed the effect of progressive decrease of the plasma compression ratio in response to increasing guide field. This effect has two basic manifestations: a decrease of the maximum plasma density and an enlargement of the sheet thickness. Based on the experimental data we advanced a concept that the deterioration of plasma compression into the sheet is due to enhancement of the guide field inside the sheet over its initial value, and due to excitation of additional currents in the plane perpendicular to the singular X line and to the original current in the sheet.
A review is presented on experimental research of current sheet formation in 3D magnetic configurations containing null-points and/or singular lines of the X-type. Formation of current sheets is revealed to occur in various 3D configurations, both with and without isolated magnetic null-points, specifically in configurations with X-lines. Local characteristics of 3D magnetic configuration define the parameters of the current sheet, which forms usually a twisted surface with an angular orientation determined by a local value of the transverse magnetic field gradient. A degree of plasma compression into the sheet decreases with a rise of longitudinal magnetic field component, displaying a transition to a behavior of uncompressible plasma. It is established that current sheet formation and magnetic reconnection processes can take place within a limited range of initial conditions, while a gradient of transverse magnetic field is the most important parameter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.