Friction stir processing (FSP) has attracted much attention in the last decade and contributed significantly to the creation of functionally graded materials with both gradient structure and gradient mechanical properties. Subsurface gradient structures are formed in FSPed metallic materials due to ultrafine grained structure formation, surface modification and hardening with various reinforcing particles, fabrication of hybrid and in situ surfaces. This paper is a review of the latest achievements in FSP of non-ferrous metal alloys (aluminum, copper, titanium, and magnesium alloys). It describes the general formation mechanisms of subsurface gradient structures in metal alloys processed by FSP under various conditions. A summary of experimental data is given for the microstructure, mechanical, and tribological properties of non-ferrous metal alloys.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.