The behaviour of the fast particle population during 18 keV hydrogen and 26 keV deuterium neutral beam injection in deuterium plasmas is investigated. Experiments reveal large fast ion losses. The experimental results are confirmed using different types of modelling: simulation using the NUBEAM module, solution of the Boltzmann kinetic equation and solution of the 3D fast ion tracking algorithm. The dynamics of the energetic particle redistribution and losses during sawtooth oscillation and toroidal Alfvén eigenmodes are studied. A method to decrease fast ion losses under the current conditions (0.4 T, 0.2 MA) is shown. The influence of the plasma parameters on the energetic ion confinement rate is investigated. Modelling for the Globus-M2 conditions (1 T, 0.5 MA) is performed.
Multi-diagnostic approach developed for the GAM research in the spherical tokamak Globus M is described. Doppler backscattering (DBS) method as the tool for the GAM study, together with the diagnostics of plasma density and magnetic field GAM oscillations, were simultaneously used in experiments. The version of the DBS diagnostics with two cut-offs positioned at different poloidal angles of the minor cross-section was employed in Globus-M. For the GAM plasma density oscillation study, the D α emission was observed at different angles to restore the spatial mode structure of the GAM plasma density oscillations. At the same time, the array of Mirnov coils was used for the GAM-like magnetic oscillation study, and that made it possible to restore the magnetic field perturbation spatial structure. The coherent and cross-bicoherence analyzes were employed to identify the interaction between the GAM velocity oscillation and plasma turbulent fluctuations.
Experiments and simulations to achieve high values of plasma parameters at the Globus-M spherical tokamak (ST) at moderate auxiliary heating power (0.2-0.8 MW) are described. Important distinguishing features are the low edge safety factor range, which is unusual for spherical tokamaks, 2.7 < q < 5 and small plasma-outer wall space (3-5 cm). High ion heating efficiency with NB injection was demonstrated. Results of numerical simulation of fast ion trajectories are described and fast ion generation during NB injection and ICR heating is discussed. Also results on their confinement and slowing down processes investigation are presented. Reasons for achievement of high IC heating efficiency are outlined. Reliable H-mode regime achievement is described. Transport ASTRA modeling demonstrated that during NB heated H-mode ion heat diffusivity remains neoclassical and the particle diffusion coefficient inside transport barrier decreases significantly. RGTi divertor tile analysis was performed after irradiation by plasma during big number of shots (10000 shots in average). Mixed layer composition is measured and deuterium retention in different tokamak first wall area is estimated. Plasma jet injection experiments with upgraded plasma jet are described. Jet penetration to the plasma center with immense increase of density and temperature drop is proved and analogy with pellet injection is outlined.
In this paper we present the fusion related activities of the Plasma Physics Division at the Ioffe Institute. The first experiments on lower hybrid current drive (LHCD) in a spherical tokamak performed at the Globus-M tokamak (R = 0.36 m, a = 0.24 m, B t = 0.4 T, I p = 200 kA) with a novel poloidally oriented grill resulted in an RF driven current of up to 30 kA at (100 kW, 2.5 GHz), exceeding the modelling predictions. At the FT-2 tokamak (R = 0.56 m, a = 0.08 m, B t = 3 T, I p = 30 kA) experiments with a traditional toroidally oriented grill revealed no strong dependence of the LHCD density limit on the H/D ratio in spite of LH resonance densities differing by a factor of 3. Microwave Doppler reflectometry (DR) at the Globus-M, and DR and heavy ion beam probe measurements at the tokamak TUMAN-3M (R = 0.53 m, a = 0.24 m, B t = 1.0 T, I p = 190 kA) demonstrated geodesic acoustic mode (GAM) suppression at the L to H transition. Observations at FT-2 using Doppler Enhanced Scattering showed that the GAM amplitude is anti-correlated both spatially and temporally to the drift turbulence level and electron thermal diffusivity. For the first time turbulence amplitude modulation at the GAM frequency was found both experimentally and in global gyrokinetic modelling. A model of the L-H transition is proposed based on this effect. The loss mechanisms of energetic ions' (EI) were investigated in the neutral beam injection (NBI) experiments on Globus-M and TUMAN-3M. Empirical scaling of the 2.45 MeV DD neutron rate for the two devices shows a strong dependence on toroidal field B 1.29 t and plasma current I 1.34 p justifying the B t and I p increase by a factor of 2.5 for the proposed upgrade of Globus-M. Bursts of ∼1 MHz Alfvenic type oscillations correlating with sawtooth crashes were observed in ohmic TUMAN-3M discharges. The possibility of low threshold parametric excitation of Bernstein and upper hybrid waves trapped in drift-wave eddies resulting in anomalous absorption in electron cyclotron resonance heating (ECRH) experiments in toroidal plasmas was identified theoretically. A novel method of radial correlation Doppler reflectometry is shown to be capable of measuring the turbulence wave-number spectrum in realistic 2D geometry. On the progress in design and fabrication of three diagnostics for ITER developed in the Ioffe institute is reported: neutral particle analysis, divertor Thomson scattering and gamma spectroscopy.
Divertor Thomson scattering (DTS) and laser-induced fluorescence (LIF) are both laser aided diagnostics well suited to combination with common probing and collecting optics that are the most sophisticated and expensive part of any ITER optical diagnostic system. The combination of DTS and LIF are used for simultaneous measurement of local electron (Te, ne), ion (Ti, nHeII) and atom (nHeI, nH(D,T)) parameters and provide basic information on rates of electron and ion processes to allow basic understanding of the physics of divertor plasma detachment. The measured parameters permit the calculation of rates of ionization and recombination using Te, ne, Ti, ni, nHeI and nH(D,T); emission intensity—Te, ne, ni, nHeI and nH(D,T); frictional force of the plasma flow due to collisions with neutrals—Ti, ni, T0, nHeI and nH(D,T) and pressure of the incoming plasma flow—Te, ne, Ti and ni. The paper discusses the benefits of DTS and LIF integration, suggests new approaches to the estimation of DTS capability, LIF implementation and possibilities for further diagnostic development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.