Tokamak plasmas often exhibit self-organizing behavior in which internal modes shape the toroidal current density profile, a common example being the sawtooth instability. However, such behavior has not been studied in detail for edge safety factor below 2 due to disruptive kink instabilities that typically prevent operation in this regime. Now, steady tokamak plasmas with an edge safety factor down to 0.8 have been created in the Madison Symmetric Torus, where disruptions are prevented due to a thick, conductive wall and a feedback power supply that sustains the plasma current. Internal measurements and nonlinear magnetohydrodynamic modeling reveal a family of safety factor profiles with a central value clamped near unity as the edge safety factor decreases, indicating current profile broadening through a relaxation process. As the safety factor decreases, the magnetic fluctuations become irregular, and the electron energy confinement time decreases.
The Thomson scattering diagnostic on MST records both equilibrium and fluctuating electron temperature with a range capability of 10 eV-5 keV. Standard operation with two modified commercial Nd:YAG lasers allows measurements at rates of 1 kHz-25 kHz. Several subsystems of the diagnostic are being improved. The power supplies for the avalanche photodiode detectors (APDs) that record the scattered light are being replaced to improve usability, reliability, and maintainability. Each of the 144 APDs will have an individual rack mounted switching supply, with bias voltage adjustable to match the APD. Long-wavelength filters (1140 nm center, 80 nm bandwidth) have been added to the polychromators to improve capability to resolve non-Maxwellian distributions and to enable directed electron flow measurements. A supercontinuum (SC) pulsed white light source has replaced the tungsten halogen lamp previously used for spectral calibration of the polychromators. The SC source combines substantial brightness produced in nanosecond pulses with a spectrum that covers the entire range of the polychromators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.