BACKGROUND Non- albicans Candida prosthetic joint infections (PJIs) are rare. Optimal treatment involves a two-stage revision surgery in combination with an antifungal agent. However, no clear guidelines have been developed regarding the agent or treatment duration. Hence, a broad range of antifungal and surgical treatments have been reported so far. AIM To clarify treatment of non- albicans Candida PJIs. METHODS A literature review of all existing non- albicans Candida PJIs cases through April 2018 was conducted. Information was extracted about demographics, comorbidities, responsible species, duration and type of antifungal treatment, type of surgical treatment, time between initial arthroplasty and symptom onset, time between symptom onset and definite diagnosis, outcome of the infection and follow-up. RESULTS A total of 83 cases, with a mean age of 66.3 years, were located. The causative yeast isolated in most cases was C. parapsilosis (45 cases; 54.2%), followed by C. glabrata (18 cases; 21.7%). The mean Charlson comorbidity index was 4.4 ± 1.5. The mean time from arthropalsty to symptom onset was 27.2 ± 43 mo, while the mean time from symptom onset to culture-confirmed diagnosis was 7.5 ± 12.5 mo. A two stage revision arthroplasty (TSRA), when compared to one stage revision arthroplasty, had a higher success rate (96% vs 73%, P = 0.023). Fluconazole was the preferred antifungal agent (59; 71%), followed by amphotericin B (41; 49.4%). CONCLUSION The combination of TSRA and administration of prolonged antifungal therapy after initial resection arthroplasty is suggested on the basis of limited data.
Background: Fungal prosthetic joint infections (PJIs) are rare, especially those caused by non-Candida species. Treatment has not been fully elucidated, since a plethora of antifungal and surgical interventions have been proposed. Τhis study represents an effort to clarify the optimal management of non-Candida fungal PJIs, by reviewing all relevant published cases. Methods: A thorough review of all existing non-Candida fungal PJIs in the literature was conducted. Data regarding demographics, responsible organisms, antifungal treatment (AFT), surgical intervention, time between initial arthroplasty and onset of symptoms, and time between onset of symptoms and firm diagnosis, as well as the infection’s outcome, were evaluated. Results: Forty-two PJIs, in patients with mean age of 66.2 years, were found and reviewed. Aspergillus spp. were isolated in most cases (10; 23.8%), followed by Coccidioides spp. (7; 16.7%) and Pichiaanomala (5; 11.9%). Fluconazole was the preferred antifungal regimen (20 cases; 47.6%), followed by amphotericin B (18 cases; 42.9%), while the mean AFT duration was 9.4 months (SD = 7.06). Two-stage revision arthroplasty (TSRA) was performed in 22 cases (52.4%), with the mean time between stages being 5.2 months (SD = 2.9). The mean time between initial joint implantation and onset of symptoms was 42.1 months (SD = 50.7), while the mean time between onset of symptoms and diagnosis was 5.8 months (SD = 14.3). Conclusions: Non-Candida fungal PJIs pose a clinical challenge, demanding a multidisciplinary approach. The present review has shown that combination of TSRA separated by a 3–6-month interval and prolonged AFT has been the standard of care in the studied cases.
Pericoronary adipose tissue (PCAT) is a source of microRNAs (miRs) that act as messengers for intercellular communication. We investigated whether the PCAT surrounding significant coronary atherosclerotic lesions shows specific miR expression patterns compared with PCAT surrounding plaque-free segments. We included 49 patients with 3-vessel coronary artery disease (CAD) and 19 patients with severe valvular disease but no CAD, who underwent elective cardiac surgery. The PCAT was harvested from two sites: adjacent to a significant atherosclerotic coronary lesion and from plaque-free segments. miR-133a, miR-21, miR-26b, miR-9, and miR-143 levels in PCAT cells were quantified by real-time reverse transcription polymerase chain reaction (data expressed as arbitrary units). Expression of miR-133, miR-21, and miR-26b in adipose tissue at a site without atherosclerotic lesion was much lower in patients with CAD than in those without CAD (0.82 ± 1.37 vs 1.86 ± 0.52, P < .001, 0.45 ± 1.3 vs 1.51 ± 1.11, P < .001, 0.3 ± 1.25 vs 1.2 ± 0.73, P = .02, respectively). In addition, miR-133, miR-21, and miR-143 in CAD patients showed significantly greater expression in PCAT from atherosclerotic lesion compared with plaque-free segments (1.32 ± 0.96 vs 0.82 ± 0.37 (P = .011), 0.91 ± 1.7 vs 0.3 ± 1.25 (P = .012), 1.2 ± 1.59 vs 0.43 ± 0.54 (P < .001), respectively). Our findings open new perspectives for the role of PCAT in the pathophysiology of atherosclerosis and should be further investigated.
Sodium-glucose cotransporter 2 inhibitors (SGLT2i) have changed the clinical landscape of diabetes mellitus (DM) therapy through their favourable effects on cardiovascular outcomes. Notably, the use of SGLT2i has been linked to cardiovascular benefits regardless of DM status, while their pleiotropic actions remain to be fully elucidated. What we do know is that SGLT2i exert beneficial effects even at the level of the myocardial cell, and that these are linked to an improvement in the energy substrate, resulting in less inflammation and fibrosis. SGLT2i ameliorate myocardial extracellular matrix remodeling, cardiomyocyte stiffness and concentric hypertrophy, achieving beneficial remodeling of the left ventricle with significant implications for the pathogenesis and outcome of heart failure. Most studies show a significant improvement in markers of diastolic dysfunction along with a reduction in left ventricular hypertrophy. In addition to these effects there is electrophysiological remodeling, which explains initial data suggesting that SGLT2i have an antiarrhythmic action against both atrial and ventricular arrhythmias. However, future studies need to clarify not only the exact mechanisms of this beneficial functional, structural, and electrophysiological cardiac remodeling, but also its magnitude, and to determine whether this is a class or a drug effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.