Abstract. The host response to Salmonella plays a major role in the outcome of infection. The present study was undertaken to further characterize Salmonella typhimurium infection in neonatal calves at both the morphologic and the molecular level using the ligated ileal loop model. Eight 4-5-week-old male Holstein calves underwent laparotomy, and loops were prepared in the ileum. The loops were either inoculated with an S. typhimurium strain pathogenic for cattle or injected with sterile LB broth as control. Samples for histology, transmission and scanning electron microscopy, and RNA extraction were collected at various time points between 5 minutes and 12 hours postinfection. Invasion of both M cells and enterocytes began at 15 minutes postinfection. No specific cell type was the main target for invasion. Intracellular bacteria were observed in the lamina propria after 1 hour postinfection. A severe acute neutrophilic response was associated with invasion of the Peyer's patches. Upregulated expression of CXC chemokines (interleukin [IL]-8, growth-related oncogenes, [GRO] ␣ and ␥, and granulocyte chemotactic protein [GCP]2) was detected by reverse transcription polymerase chain reaction beginning at 1 hour postinfection. Expression of proinflammatory (IL-1, IL-18, and tumor necrosis factor [TNF]␣) and anti-inflammatory (IL-10, IL-1Ra, and IL-4) cytokines was also assessed. A marked increase in expression of IL-1 was observed, whereas the profile of expression of IL-18 and TNF␣ did not change after infection. Upregulation of IL-1Ra and IL-4 but not of IL-10 was observed. These findings indicate that infection of bovine ligated ileal loops with S. typhimurium results in an acute neutrophilic inflammatory response that is associated with the upregulation of CXC chemokines (IL-8, GRO␣ and ␥, and GCP2), IL-1, IL-1Ra, and IL-4.
In aquatic environments, iodine mainly exists as iodide, iodate, and organic iodine. The high mobility of iodine in aquatic systems has led to (129)I contamination problems at sites where nuclear fuel has been reprocessed, such as the F-area of Savannah River Site. In order to assess the distribution of (129)I and stable (127)I in environmental systems, a sensitive and rapid method was developed which enables determination of isotopic ratios of speciated iodine. Iodide concentrations were quantified using gas chromatography-mass spectrometry (GC-MS) after derivatization to 4-iodo-N,N-dimethylaniline. Iodate concentrations were quantified by measuring the difference of iodide concentrations in the solution before and after reduction by Na(2)S(2)O(5). Total iodine, including inorganic and organic iodine, was determined after conversion to iodate by combustion at 900 °C. Organo-iodine was calculated as the difference between the total iodine and total inorganic iodine (iodide and iodate). The detection limits of iodide-127 and iodate-127 were 0.34 nM and 1.11 nM, respectively, whereas the detection limits for both iodide-129 and iodate-129 was 0.08 nM (i.e., 2pCi (129)I/L). This method was successfully applied to water samples from the contaminated Savannah River Site, South Carolina, and more pristine Galveston Bay, Texas.
Salmonella enterica serovar Typhimurium causes cell death in bovine monocyte-derived and murine macrophages in vitro by a sipB-dependent mechanism. During this process, SipB binds and activates caspase-1, which in turn activates the proinflammatory cytokine interleukin-1 through cleavage. We used bovine ileal ligated loops to address the role of serovar Typhimurium-induced cell death in induction of fluid accumulation and inflammation in this diarrhea model. Twelve perinatal calves had 6-to 9-cm loops prepared in the terminal ileum. They were divided into three groups: one group received an intralumen injection of Luria-Bertani broth as a control in 12 loops. The other two groups (four calves each) were inoculated with 0.75 ؋ 10 9 CFU of either wild-type serovar Typhimurium (strain IR715) or a sopB mutant per loop in 12 loops. Hematoxylin and eosin-stained sections were scored for inflammation, and terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL)-positive cells were detected in situ. Fluid accumulation began at 3 h postinfection (PI). Inflammation was detected in all infected loops at 1 h PI. The area of TUNEL-labeled cells in the wild-type infected loops was significantly higher than that of the controls at 12 h PI, when a severe inflammatory response and tissue damage had already developed. The sopB mutant induced the same amount of TUNEL-positive cells as the wild type, but it was attenuated for induction of fluid secretion and inflammation. Our results indicate that serovar Typhimurium-induced cell death is not required to trigger an early inflammatory response and fluid accumulation in the ileum.
Ubiquitously distributed in different plant species, plant lectins are highly diverse carbohydrate-binding proteins of non-immune origin. They have interesting pharmacological activities and currently are of great interest to thousands of people working on biomedical research in cancer-related problems. It has been widely accepted that plant lectins affect both apoptosis and autophagy by modulating representative signalling pathways involved in Bcl-2 family, caspase family, p53, PI3K/Akt, ERK, BNIP3, Ras-Raf and ATG families, in cancer. Plant lectins may have a role as potential new anti-tumour agents in cancer drug discovery. Thus, here we summarize these findings on pathway- involved plant lectins, to provide a comprehensive perspective for further elucidating their potential role as novel anti-cancer drugs, with respect to both apoptosis and autophagy in cancer pathogenesis, and future therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.