To investigate the reason for the reduction in damage resistance of In x Ga1−x N with increasing indium (In) content, we used molecular dynamics methods to simulate the threshold displacement energies, the individual recoil damage and the overlapping cascade processes in In x Ga1−x N (x = 0.3, 0.5, 0.7) during ion implantation. The average threshold displacement energy of In x Ga1−x N decreases a little (from 41.0 eV to 34.6 eV) as the In content increases (from 0.3 to 0.7) and the number of defects produced by individual cascades increases less than 30% with increasing In content (from 0.3 to 0.7), while the overlapping cascade simulations showed that with In content increasing the dynamic annealing processes in cascades were significantly suppressed. Thus, the suppression of dynamic annealing in the cascades is the main reason for the reduction of damage resistance of In x Ga1−x N by adding In content. The analysis of defect distribution during overlapping cascades showed that defects in In-rich In x Ga1−x N (x = 0.7) agglomerate more rapidly as the irradiation dose increases and are likely to form large clusters, which are harder to anneal during cascade evolution. Therefore, the suppression of dynamic annealing in In-rich In x Ga1−x N can be attributed to the rapid agglomeration of defects with the irradiation dose.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.