Mechanical properties and fracture toughness micromechanisms of copolypropylene filled with different amount of nanometric CaCO 3 (5-15 wt %) were studied. J-integral fracture toughness was incorporated to measure the effect of incorporation of nanoparticle into PP matrix. Crack-tip damage zones and fracture surfaces were studied to investigate the effect of nanofiller content on fracture toughness micromechanisms. It was found that nanofiller acted as a nucleating agent and decreased the spherulite size of polypropylene significantly. J-integral fracture toughness (J c ) of nanocomposites was improved dramatically. The J c value increased up to approximately two times that of pure PP at 5 wt % of nano-CaCO 3 . The fracture micromechanisms varied from rubber particles cavitation and shear yielding in pure PP to simultaneous existence of rubber particles cavitation, shear yielding, filler particles debonding, and crazing in PP/CaCO 3 nanocomposites.
Rubber particle cavitation has been the focus of many investigations because it dramatically affects the mechanical properties of polymeric blends. In this work, the effect of rubber particle cavitation on the mechanical behavior of high-impact polystyrene was studied. The extent of cavitation in rubber particles was varied via different thermal contraction/expansion cycles in the range of À100 to 238C. Tensile, creep, and Charpy impact tests were conducted to evaluate the effects of the degree of cavitation on the general mechanical properties. The notch-tip damage zone and deformation micromechanisms were also investigated by a transmitted optical microscopy technique to reveal the effects of cavitation on toughness. The results of this investigation illustrate a close relationship between the degree of rubber particle cavitation and the mechanical performance of high-impact polystyrene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.