Context. We present the second Gaia data release, Gaia DR2, consisting of astrometry, photometry, radial velocities, and information on astrophysical parameters and variability, for sources brighter than magnitude 21. In addition epoch astrometry and photometry are provided for a modest sample of minor planets in the solar system. Aims. A summary of the contents of Gaia DR2 is presented, accompanied by a discussion on the differences with respect to Gaia DR1 and an overview of the main limitations which are still present in the survey. Recommendations are made on the responsible use of Gaia DR2 results. Methods. The raw data collected with the Gaia instruments during the first 22 months of the mission have been processed by the Gaia Data Processing and Analysis Consortium (DPAC) and turned into this second data release, which represents a major advance with respect to Gaia DR1 in terms of completeness, performance, and richness of the data products. Results. Gaia DR2 contains celestial positions and the apparent brightness in G for approximately 1.7 billion sources. For 1.3 billion of those sources, parallaxes and proper motions are in addition available. The sample of sources for which variability information is provided is expanded to 0.5 million stars. This data release contains four new elements: broad-band colour information in the form of the apparent brightness in the GBP (330–680 nm) and GRP (630–1050 nm) bands is available for 1.4 billion sources; median radial velocities for some 7 million sources are presented; for between 77 and 161 million sources estimates are provided of the stellar effective temperature, extinction, reddening, and radius and luminosity; and for a pre-selected list of 14 000 minor planets in the solar system epoch astrometry and photometry are presented. Finally, Gaia DR2 also represents a new materialisation of the celestial reference frame in the optical, the Gaia-CRF2, which is the first optical reference frame based solely on extragalactic sources. There are notable changes in the photometric system and the catalogue source list with respect to Gaia DR1, and we stress the need to consider the two data releases as independent. Conclusions. Gaia DR2 represents a major achievement for the Gaia mission, delivering on the long standing promise to provide parallaxes and proper motions for over 1 billion stars, and representing a first step in the availability of complementary radial velocity and source astrophysical information for a sample of stars in the Gaia survey which covers a very substantial fraction of the volume of our galaxy.
Abstract.We study the statistical characteristics of a box-fitting algorithm to analyze stellar photometric time series in the search for periodic transits by extrasolar planets. The algorithm searches for signals characterized by a periodic alternation between two discrete levels, with much less time spent at the lower level. We present numerical as well as analytical results to predict the possible detection significance at various signal parameters. It is shown that the crucial parameter is the effective signal-to-noise ratio -the expected depth of the transit divided by the standard deviation of the measured photometric average within the transit. When this parameter exceeds the value of 6 we can expect a significant detection of the transit. We show that the box-fitting algorithm performs better than other methods available in the astronomical literature, especially for low signal-to-noise ratios.
Gaia is a cornerstone mission in the science programme of the European Space Agency (ESA). The spacecraft construction was approved in 2006, following a study in which the original interferometric concept was changed to a direct-imaging approach. Both the spacecraft and the payload were built by European industry. The involvement of the scientific community focusses on data processing for which the international Gaia Data Processing and Analysis Consortium (DPAC) was selected in 2007. Gaia was launched on 19 December 2013 and arrived at its operating point, the second Lagrange point of the Sun-Earth-Moon system, a few weeks later. The commissioning of the spacecraft and payload was completed on 19 July 2014. The nominal five-year mission started with four weeks of special, ecliptic-pole scanning and subsequently transferred into full-sky scanning mode. We recall the scientific goals of Gaia and give a description of the as-built spacecraft that is currently (mid-2016) being operated to achieve these goals. We pay special attention to the payload module, the performance of which is closely related to the scientific performance of the mission. We provide a summary of the commissioning activities and findings, followed by a description of the routine operational mode. We summarise scientific performance estimates on the basis of in-orbit operations. Several intermediate Gaia data releases are planned and the data can be retrieved from the Gaia Archive, which is available through the Gaia home page.
We report 75 milli-arcsec resolution, near-IR imaging spectroscopy within the central 30 light days of the Galactic Center, taken with the new adaptive optics assisted, integral field spectrometer SINFONI on the ESO-VLT. To a limiting magnitude of K~16, 9 of 10 1 based on observations obtained at the Very Large Telescope (VLT) of the European Southern Observatory, Chile 1 stars in the central 0.4", and 13 of 17 stars out to 0.7" from the central black hole have spectral properties of B0-B9, main sequence stars. Based on the 2.1127µm HeI line width all brighter early type stars have normal rotation velocities, similar to solar neighborhood stars.We combine the new radial velocities with SHARP/NACO astrometry to derive improved 3 d stellar orbits for six of these 'S'-stars in the central 0.5". Their orientations in space appear random. Their orbital planes are not co-aligned with those of the two disks of massive young stars 1-10" from SgrA*. We can thus exclude the hypothesis that the S-stars as a group inhabit the inner regions of these disks. They also cannot have been located/formed in these disks and then migrated inwards within their planes. From the combination of their normal rotation and random orbital orientations we conclude that the S-stars were most likely brought into the central light month by strong individual scattering events.The updated estimate of distance to the Galactic center from the S2 orbit fit is R o = 7.62 ± 0.32 kpc, resulting in a central mass value of 3.61 ± 0.32 x 10 6 M ⊙ .We happened to catch two smaller flaring events from SgrA* during our spectral observations. The 1.7-2.45µm spectral energy distributions of these flares are fit by a featureless, 'red' power law of spectral index α'=-4±1 (S ν~ν α' ). The observed spectral slope is in good agreement with synchrotron models in which the infrared emission 2 comes from accelerated non-thermal, high energy electrons in a radiative inefficient accretion flow in the central R~10 R s region.
Since the discovery of short-period exoplanets a decade ago, photometric surveys have been recognized as a feasible method to detect transiting hot Jupiters. Many transit surveys are now under way, with instruments ranging from 10-cm cameras to the Hubble Space Telescope. However, the results of these surveys have been much below the expected capacity, estimated in the dozens of detections per year. One of the reasons is the presence of systematics (``red noise'') in photometric time series. In general, yield predictions assume uncorrelated noise (``white noise''). In this paper, we show that the effect of red noise on the detection threshold and the expected yields cannot be neglected in typical ground-based surveys. We develop a simple method to determine the effect of red noise on photometric planetary transit detections. This method can be applied to determine detection thresholds for transit surveys. We show that the detection threshold in the presence of systematics can be much higher than with the assumption of white noise, and obeys a different dependence on magnitude, orbital period and the parameters of the survey. Our method can also be used to estimate the significance level of a planetary transit candidate (to select promising candidates for spectroscopic follow-up). We apply our method to the OGLE planetary transit search, and show that it provides a reliable description of the actual detectionthreshold with real correlated noise. We point out in what way the presence of red noise could be at least partly responsible for the dearth of transiting planet detections from existing surveys, and examine some possible adaptations in survey planning and strategy. Finally, we estimate the photometric stability necessary to the detection of transiting ``hot Neptunes''.Comment: 14 pages, 15 figures, to appear in MNRA
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.