Biological muscle is considered a powerful actuator due to its flexibility, lightweight, and efficiency. The building unit of a muscle, sarcomere, and the study of its energy balance cycle is considered in researches due to its importance to mimic the micro-level muscle structure to improve the artificial muscle performance. In this work, a new design of a linear actuator based on the sarcomere behavior is developed. The design is inspired by studying the four steps adenosine triphosphate (ATP) hydrolysis cycle, which is the main source of the required energy for sarcomere contraction. A new developed hybrid hydrogel-polymeric material actuator is designed in this paper using a combination between Ionic Polymeric Metallic Composites (IPMC) and hydrogel to behave like the sarcomere. This new actuator proposes an autonomous cycle using the effect oscillatory Belousov–Zhabotinsky (BZ) reaction. The physical model is proposed, and the mathematical model of the actuator is derived and formulated and identified using MATLAB/Simulink.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.