The objectives of this work were to isolate and characterise a heavy metal-reducing bacterium with the capability to degrade another xenobiotic; an organic pollutant. Six molybdenum-reducing bacteria from soil that can reduce sodium molybdate into the colloidal molybdenum blue (Mo-blue) were isolated. One of these isolates identified as Pseudomonas putida strain Egypt-15 was capable of growing on PEG 4000. The optimal conditions for Mo-blue production were 34 °C, pH 6.5, 20 mM molybdate, and glucose as the electron donor. The optimum concentration supporting the growth on PEG 4000 was between 600 and 800 mgL-1. PEG degradation showed a lag period of about two days and 75 % degradation of PEG 4000 was achieved on day six at 800 mgL-1. Growth on PEG 4000 at 800 mgL-1 modelled according to the modified Gompertz model gave a maximum specific growth rate of 2.216 d-1 and a lag period of 1.45 days. Growth on PEG was optimum at 30 °C and pH 7.5. The dual ability of this bacterium to detoxify molybdenum and degrade PEG is novel and will be very useful for bioremediation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.