Abstract. Synchronous Kleene algebra (SKA) is a decidable framework that combines Kleene algebra (KA) with a synchrony model of concurrency. Elements of SKA can be seen as processes taking place within a fixed discrete time frame and that, at each time step, may execute one or more basic actions or then come to a halt. The synchronous Kleene algebra with tests (SKAT) combines SKA with a Boolean algebra. Both algebras were introduced by Prisacariu, who proved the decidability of the equational theory, through a Kleene theorem based on the classical Thompson ε-NFA construction. Using the notion of partial derivatives, we present a new decision procedure for equivalence between SKA terms. The results are extended for SKAT considering automata with transitions labeled by Boolean expressions instead of atoms. This work continous previous research done for KA and KAT, where derivative based methods were used in feasible algorithms for testing terms equivalence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.