The goal of this study was to determine the effects of genetic variation in the organic cation transporter 1, OCT1, on the pharmacokinetics of the antidiabetic drug, metformin. Twenty healthy volunteers with known OCT1 genotype agreed to participate in the study. Each subject received two oral doses of metformin followed by collection of blood and urine samples. OCT1 genotypes had a significant (P<0.05) effect on metformin pharmacokinetics, with a higher area under the plasma concentration-time curve (AUC), higher maximal plasma concentration (Cmax), and lower oral volume of distribution (V/F) in the individuals carrying a reduced function OCT1 allele (R61C, G401S, 420del, or G465R). The effect of OCT1 on metformin pharmacokinetics in mice was less than in humans possibly reflecting species differences in hepatic expression level of the transporter. Our studies suggest that OCT1 genotype is a determinant of metformin pharmacokinetics.
Tissue distribution and developmental expression of fetuin were studied in the sheep fetus from embryonic day (E) 30 to adult (gestational period is 150 days). The presence of fetuin was demonstrated immunocytochemically using anti-fetuin antibodies; in situ hybridisation using short anti-sense oligonucleotide probes labelled with digoxigenin was used to study the ability of the developing tissue to synthesise fetuin, and reverse transcription-polymerase chain reaction (RT-PCR) was used to estimate the level of fetuin mRNA in selected tissues. Tissue distribution of fetuin was widespread in the younger fetuses (E30 to E40). The most prominent presence due to in situ synthesis was demonstrated in the liver, central nervous system (CNS) including anterior horn cells, dorsal root ganglia and in skeletal muscle cells. Other developing tissues and organs that showed evidence of fetuin synthesis and presence of the protein included mesenchyme, kidney, adrenal, developing bone, gut, lung and heart. In the immature liver (E30-40) there was a strong signal for fetuin mRNA in hepatocytes and also in numerous haemopoietic cells; the proportion of these latter cells that was positive for fetuin mRNA increased between E30 and E40. Only some hepatocytes and a proportion of the haemopoietic stem cells were immunoreactive for fetuin itself at E30-40; immunoreactive hepatocytes were more frequently observed in the more mature outer regions of the developing liver. Lung and gut contained scattered fetuin-positive epithelial cells, especially at E30; a weak fetuin mRNA signal could be detected above background in many of these cells up to E40, but not at E60-E115 or in the adult. Particularly at E30 to E40, mesenchymal tissue both within organs such as the gut and lung and around forming bone and skeletal muscle contained cells that were positive for fetuin mRNA. Mesenchyme at these ages was also very strongly stained for fetuin protein, much of which may reflect fetuin in tissue extracellular spaces and be derived from the high concentration in plasma. By E80 fetuin mRNA was mainly present in the liver and the CNS; staining of the muscle tissue was becoming less pronounced. However in developing bone tissue, staining of chondrocytes for fetuin mRNA was still prominent in older (E80) fetuses; there was also fetuin protein staining of chondrocytes at the growing surfaces of bones and in bone marrow at this age. In the adult, weak immunocytochemical staining for fetuin itself was present in hepatocytes, but the mRNA signal was barely above the threshold limit of detection.(ABSTRACT TRUNCATED AT 400 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.