In this paper, we solved the Newell-Whitehead equation approximately using Adomain Decomposition method and we have compared this solution with the exact solution; we found that the solution of this method is so close to the exact solution and this solution is slower to converge to the exact solution when we increase t however, this method is effective for this kind of problems.
In this article, the application of variational homotopy perturbation method is applied to solve Benjamin-Bona-Mahony equation. Then, we obtain the numerical solution of BBM equation using the initial condition. Comparison with Adomian's decomposition method, homotopy perturbation method, and with the exact solution shows that VHPM is more effective and accurate than ADM and HPM, and is reliable and manageable for this type of equation.
The Burger's-Huxley equation has been solved numerically by using two finite difference methods, the explicit scheme and the Crank-Nicholson scheme. A comparison between the two schemes has been made and it has been found that, the first scheme is simpler while the second scheme is more accurate and has faster convergent. Also, the stability analysis of the two methods by using Fourier (Von Neumann) method has been done and the results were that, the explicit scheme is stable under the condition
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.