The present assay reliably measures ET-1 levels in rat and human plasma. It allows to discriminate between different forms of hypertension with high or low circulating levels of ET-1.
Our in vitro water test was able to mimic a negative pressure situation, where the wall-less cannula design performs better compared with the traditional thin-wall cannula.
Objective Inadequate venous drainage during minimally invasive cardiac surgery becomes most evident when the blood trapped in the pulmonary circulation floods the surgical field. The present study was designed to assess the in vivo performance of new, thinner, virtually wall-less, venous cannulas designed for augmented venous drainage in comparison to traditional thin-wall cannulas. Methods Remote cannulation was realized in 5 bovine experiments (74.0 ± 2.4 kg) with percutaneous venous access over the wire, serial dilation up to 18 F and insertion of either traditional 19 F thin wall, wire-wound cannulas, or through the same access channel, new, thinner, virtually wall-less, braided cannulas designed for augmented venous drainage. A standard minimal extracorporeal circuit set with a centrifugal pump and a hollow fiber membrane oxygenator, but no inline reservoir was used. One hundred fifty pairs of pump-flow and required pump inlet pressure values were recorded with calibrated pressure transducers and a flowmeter calibrated by a volumetric tank and timer at increasing pump speed from 1500 RPM to 3500 RPM (500-RPM increments). Results Pump flow accounted for 1.73 ± 0.85 l/min for wall-less versus 1.17 ± 0.45 l/min for thin wall at 1500 RPM, 3.91 ± 0.86 versus 3.23 ± 0.66 at 2500 RPM, 5.82 ± 1.05 versus 4.96 ± 0.81 at 3500 RPM. Pump inlet pressure accounted for 9.6 ± 9.7 mm Hg versus 4.2 ± 18.8 mm Hg for 1500 RPM, −42.4 ± 26.7 versus −123 ± 51.1 at 2500 RPM, and −126.7 ± 55.3 versus −313 ±116.7 for 3500 RPM. Conclusions At the well-accepted pump inlet pressure of −80 mm Hg, the new, thinner, virtually wall-less, braided cannulas provide unmatched venous drainage in vivo. Early clinical analyses have confirmed these findings.
Polysubstituted piperazine derivatives, designed as new iron chelators, were synthesized and fully characterized by nuclear magnetic resonance and mass spectroscopy. Their potential to prevent iron-induced neurotoxicity was assessed using a cellular model of Parkinson disease. We demonstrated their ability to provide sustained neuroprotection to dopaminergic neurons that are vulnerable in this pathology. The iron chelating properties of the new compounds were determined by spectrophotometric titration illustrating that high affinity for iron is not associated with important neuroprotective effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.