Word Sense Disambiguation (WSD) is the task of determining which sense of an ambiguous word (word with multiple meanings) is chosen in a particular use of that word, by considering its context. A sentence is considered ambiguous if it contains ambiguous word(s). Practically, any sentence that has been classified as ambiguous usually has multiple interpretations, but just one of them presents the correct interpretation. We propose an unsupervised method that exploits knowledge based approaches for word sense disambiguation using Harmony Search Algorithm (HSA) based on a Stanford dependencies generator (HSDG). The role of the dependency generator is to parse sentences to obtain their dependency relations. Whereas, the goal of using the HSA is to maximize the overall semantic similarity of the set of parsed words. HSA invokes a combination of semantic similarity and relatedness measurements, i.e., Jiang and Conrath (jcn) and an adapted Lesk algorithm, to perform the HSA fitness function. Our proposed method was experimented on benchmark datasets, which yielded results comparable to the state-of-the-art WSD methods. In order to evaluate the effectiveness of the dependency generator, we perform the same methodology without the parser, but with a window of words. The empirical results demonstrate that the proposed method is able to produce effective solutions for most instances of the datasets used.
Handwriting recognition refers to recognizing a handwritten input that includes character(s) or digit(s) based on an image. Because most applications of handwriting recognition in real life contain sequential text in various languages, there is a need to develop a dynamic handwriting recognition system. Inspired by the neuroevolutionary technique, this paper proposes a Dynamically Configurable Convolutional Recurrent Neural Network (DC-CRNN) for the handwriting recognition sequence modeling task. The proposed DC-CRNN is based on the Salp Swarm Optimization Algorithm (SSA), which generates the optimal structure and hyperparameters for Convolutional Recurrent Neural Networks (CRNNs). In addition, we investigate two types of encoding techniques used to translate the output of optimization to a CRNN recognizer. Finally, we proposed a novel hybridized SSA with Late Acceptance Hill-Climbing (LAHC) to improve the exploitation process. We conducted our experiments on two well-known datasets, IAM and IFN/ENIT, which include both the Arabic and English languages. The experimental results have shown that LAHC significantly improves the SSA search process. Therefore, the proposed DC-CRNN outperforms the handcrafted CRNN methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.