The study of cement mortars containing expanded vermiculite as a filler is presented. The use of vermiculite up to 30% or more leads to good thermal insulation properties of solution, but low compressive strength. Features of the nature of expanded vermiculite contribute to reducing the density and providing heat-shielding properties. Mechanical activation of binder compositions depending on the duration of treatment in a vibrating mill compositions: Portland cement 90-70%, vermiculite 10-30%, allow to obtain a density in the range of 1720-1933 kg/m3, with a strength of 42.8-58.2 MPa, while saving up to 10 - 20% of expensive energy-intensive cement. Cement stone from binder compositions is created due to the form ation of a spatial framework created by a porous mineral filler, which, due to its high dispersion, occupies a significant spatial volume and a crystalline structure is formed on this mineral filler, as on substrates, created by calcium hydrosilicates and hydroaluminates. It builds up a secondary framework with crystalline neoplasms on finely dispersed vermiculite grains - plates. The developed binder has a porous structure due to the introduction of vermiculite filler, which reduces the thermal conductivity of the created composite. The use of the resulting binder compositions prepared from a mixture of Portland cement and vermiculite, in combination with a porous filler - expanded vermiculite, allows obtaining a heat-insulating mortar with high heat-shielding performance and guaranteed strength
The object of research is composite binders obtained from concrete scrap of destroyed buildings and structures for the production of various construction products and structures. Fractions of concrete scrap of 0,0–0,16 mm and 0,16–0,315 mm are used, since x-rayphase analysis of various fractions of concrete scrap shows that these fractions have the highest content of non-hydrated particles of alite and belite. The influence of the specific surface area on the normal density of cement dough and the setting time of binders is established. Comparative physical and mechanical indicators of hardening of binders with different specific surfaces indicate that the most stable results with a uniform increase in strength is the composition of a binder with a specific surface of 964 m2 / kg, with an increase in strength from 2 to 7 days – 27 % and from 7 to 28 days – 21 %. This binder is characterized by optimal strength at the age of 28 days – 25,5 MPa. With a specific surface of 964 m2/kg, the best conditions are created for the formation of the primary frame and its further fouling with various calcium crystalline hydrates, which ensure optimal density and strength. This composite binder has a specific surface area of 964 m2/kg and is more energyefficient. Composite binders obtained in a vibration mill from concrete scrap fractions (0,0–0,16 and 0,16–0,315 mm) meet the requirements of normative documentation on setting time and physico-mechanical parameters, which allows to recommend them for use as binders in the production of construction products and structures for various purposes.
When developing composite binders of a certain functional purpose, it is necessary to rationally select raw materials, taking into account their chemical, mineral and granulometric composition. The use of mechanical activation with the choice of the most suitable grinding unit affects the creation of binder compositions, the functional additives used have a significant impact on the properties of composite binders. The article presents the results of obtaining binder compositions of optimal composition based on Portland cement and broken ceramic bricks. Experimental studies of the granulometric composition have been carried out, the results of tests of binder compositions of the compositions: cement – broken ceramic bricks prepared in a mill are given. Compositions of binder compositions with a wide range of use of ceramic cullet waste – brick production waste have been developed and installed. Using the method of electron microscopy, the features of the microstructure of chips of cement stones synthesized on the basis of Portland cement and various content of mineral filler – ceramic brick slaughter waste, mechanically activated in a vibration mill, were studied. It is noted that the open pores of cement stone chips, synthesized binders, are densely overgrown with various neoplasms of various sizes. It has been established that the microstructure of hydrated binder compositions is marked by a dense structure due to the use of powdered brick cullet, which compact the structure of the composite, and it is also noted that grains of calcium hydrosilicates grow on the mineral particles of the filler, compacting the overall structure of the composite.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.