COVID-19 presents an urgent global challenge because of its contagious nature, frequently changing characteristics, and the lack of a vaccine or effective medicines. A model for measuring and preventing the continued spread of COVID-19 is urgently required to provide smart health care services. This requires using advanced intelligent computing such as artificial intelligence, machine learning, deep learning, cognitive computing, cloud computing, fog computing, and edge computing. This paper proposes a model for predicting COVID-19 using the SIR and machine learning for smart health care and the well-being of the citizens of KSA. Knowing the number of susceptible, infected, and recovered cases each day is critical for mathematical modeling to be able to identify the behavioral effects of the pandemic. It forecasts the situation for the upcoming 700 days. The proposed system predicts whether COVID-19 will spread in the population or die out in the long run. Mathematical analysis and simulation results are presented here as a means to forecast the progress of the outbreak and its possible end for three types of scenarios: “no actions,” “lockdown,” and “new medicines.” The effect of interventions like lockdown and new medicines is compared with the “no actions” scenario. The lockdown case delays the peak point by decreasing the infection and affects the area equality rule of the infected curves. On the other side, new medicines have a significant impact on infected curve by decreasing the number of infected people about time. Available forecast data on COVID-19 using simulations predict that the highest level of cases might occur between 15 and 30 November 2020. Simulation data suggest that the virus might be fully under control only after June 2021. The reproductive rate shows that measures such as government lockdowns and isolation of individuals are not enough to stop the pandemic. This study recommends that authorities should, as soon as possible, apply a strict long-term containment strategy to reduce the epidemic size successfully.
Breast cancer forms in breast cells and is considered as a very common type of cancer in women. Breast cancer is also a very life-threatening disease of women after lung cancer. A convolutional neural network (CNN) method is proposed in this study to boost the automatic identification of breast cancer by analyzing hostile ductal carcinoma tissue zones in whole-slide images (WSIs). The paper investigates the proposed system that uses various convolutional neural network (CNN) architectures to automatically detect breast cancer, comparing the results with those from machine learning (ML) algorithms. All architectures were guided by a big dataset of about 275,000, 50 × 50-pixel RGB image patches. Validation tests were done for quantitative results using the performance measures for every methodology. The proposed system is found to be successful, achieving results with 87% accuracy, which could reduce human mistakes in the diagnosis process. Moreover, our proposed system achieves accuracy higher than the 78% accuracy of machine learning (ML) algorithms. The proposed system therefore improves accuracy by 9% above results from machine learning (ML) algorithms.
Worldwide, plant diseases adversely influence both the quality and quantity of crop production. Thus, the early detection of such diseases proves efficient in enhancing the crop quality and reducing the production loss. However, the detection of plant diseases either via the farmers' naked eyes or their traditional tools or even within laboratories is still an error prone and time consuming process. The current paper presents a Deep Learning (DL) model with a view to developing an efficient detector of olive diseases. The proposed model is distinguishable from others in a number of novelties. It utilizes an efficient parameterized transfer learning model, a smart data augmentation with balanced number of images in every category, and it functions in more complex environments with enlarged and enhanced dataset. In contrast to the lately developed state-ofart methods, the results show that our proposed method achieves higher measurements in terms of accuracy, precision, recall, and F 1-Measure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.