This experimental part investigates the effect of injection timing on performance and emissions of homogenous mixture compressed natural-gas direct injection. The engine of 1.6 L capacity, 4 cylinders, spark ignition, and compression ratio of 14 was used. Performance and emission were recorded under wide-open throttle using an engine control system (Rotronics) and the portable exhaust gas analyser (Kane). The engine was tested at speed ranging from 1500 revolutions per minute (RPM) to 4000 RPM with 500 RPM increments. The engine control unit (ECU) was modified using Motec 800. The injection timings investigated were at the end of injection (EOI) 120 bTDC, 180 bTDC, 300 bTDC, and 360 bTDC. Results show high brake power, torque, and BMEP with 120 as compared with the other injection timings. At 4000 RPM the power, torque, and BMEP with 120 were 5% compared to that with 180. Furthermore, it shows low BSFC and high fuel conversion efficiency with 120. With 360, the engine produced less CO and CO2at higher speeds.
Due to abundance of natural gas, the use of natural gas for automotive use, particularly for internal combustion engine (ICE), is more practical and cheaper than their future successors. Even though natural gas is a cleaner fuel than other fossil fuels and has a higher octane number and can lead to higher thermal eiciency, its low carbon number makes it less atractive as compared to gasoline and diesel. Based on its potential, an engine referred to as compressed natural gas direct injection engine (CNGDI) was designed, developed and tested to operate on compressed natural gas (CNG) as monofuel directly and centrally injected into the engine. Computational and experimental works have been performed to investigate the viability of the design. Computational luid dynamics (CFD) simulations and experimental works with homogenous combustion showed that the results were in good agreement. From experimental works, it is found that combustion characteristics could be improved by using a stratiied charge piston coniguration with some drawback on performance. In terms of exhaust emissions, stratiied coniguration causes slight increase in the emission of CO, CO 2 and NO x , which highlight a need for further study on this issue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.