Abstract-Recurrent neural networks (RNN) have been successfully applied for recognition of cursive handwritten documents, both in English and Arabic scripts. Ability of RNNs to model context in sequence data like speech and text makes them a suitable candidate to develop OCR systems for printed Nabataean scripts (including Nastaleeq for which no OCR system is available to date). In this work, we have presented the results of applying RNN to printed Urdu text in Nastaleeq script. Bidirectional Long Short Term Memory (BLSTM) architecture with Connectionist Temporal Classification (CTC) output layer was employed to recognize printed Urdu text. We evaluated BLSTM networks for two cases: one ignoring the character's shape variations and the second is considering them. The recognition error rate at character level for first case is 5.15% and for the second is 13.6%. These results were obtained on synthetically generated UPTI dataset containing artificially degraded images to reflect some real-world scanning artefacts along with clean images. Comparison with shape-matching based method is also presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.