Tomato mosaic disease, caused by
Tomato Mosaic Virus
(ToMV), is one of the most destructive diseases which results in serious crop losses. Research investigations dealing with the biocontrol activity of arbuscular mycorrhizal fungi (AMF) against this viral disease are limited. In this study, the biocontrol activity of AMF on tomato plants infected with ToMV was evaluated in the greenhouse. In addition, their impacts on the transcriptional expression levels of thirteen genes controlling the phenylpropanoid, flavonoid and chlorogenic acid biosynthetic pathways were also investigated using quantitative real-time PCR. Transcriptional expressions of the majority of the studied genes were up-regulated by mycorrhizal colonization in the presence of ToMV, particularly
PAL1
and
HQT
, suggesting their pathogen-dependent inducing effect. Under greenhouse conditions, a significant reduction in the disease severity and incidence, as well as the viral accumulation level was observed as a response to the mycorrhizal colonization of the infected plants. Moreover, the evaluated growth parameters, photosynthetic pigments, and flavonoid content were significantly enhanced by AMF colonization. The obtained results demonstrated the protective role of AMF in triggering the plant immunity against ToMV in a pathogen-dependent manner. Beside their protective and growth-promotion activities, AMF are characterized by low-cost and environment-friendly properties which support their possible use for control of tomato mosaic disease.
Plant roots are exposed to penetration by different biotrophic and necrotrophic fungi. However, plant immune responses vary, depending on the root-penetrating fungus. Using qRT-PCR, changes over time in the systemic transcriptional expression of the polyphenol biosynthesis-related genes were investigated in sunflower plants in response to colonization with Rhizophagus irregularis and/or infection with Rhizoctonia solani. The results demonstrated that both fungi systemically induced the transcriptional expression of most of the addressed genes at varying degrees. However, the inducing effect differed according to the treatment type, plant organ, targeted gene, and time stage. The inducing effect of R. irregularis was more prevalent than R. solani in the early stages. In general, the dual treatment showed a superior inducing effect over the single treatments at most of the time. The hierarchical clustering analysis showed that cinnamate-4-hydroxylase was the master expressed gene along the studied time period. The cell wall lignification was the main plant-defensive-mechanism induced. In addition, accumulations of chlorogenic acid, flavonoids, and anthocyanins were also triggered. Moreover, colonization with R. irregularis improved the plant growth and reduced the disease severity. We can conclude that the proactive, rather than curative, colonization with R. irregularis is of great importance, owing to their protective and growth-promoting roles, even if no infection occurred.
Estrogen exposure is a major risk factor for breast cancer. Increased estrogen responsiveness of breast epithelium may enhance this effect. Surgical or medical castration and antiestrogenic treatment with tamoxifen are common endocrine treatments for premenopausal women with breast cancer.However, tamoxifen therapy induces high levels of plasma estradiol, with unknown long-term effects. In this study, we investigated the effect of combining the luteinizing hormone-releasing hormone agonist with tamoxifen and measuring estradiol level . method : Are taking random samples of breast cancer patients under treatment of patients attending the Institute of Atomic Radiation in Baghdad , and specifically who use Tamoxifen ( 20 mg/day) . 100 samples and 30 sample as a control there age ( 20 -80). Approximately 3ml of blood are collected from each women using standard procedures. And then measuring the level of estradiol E2 hormone ,Measurement of the liver enzymes ( GOT,GPT,ALP,LDH and GGT ) and billirubin for study the liver health results : combined treatment with tamoxifen and
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.