We demonstrate an ammonia sensor composed of a tapered multimode fiber coated with polyaniline nanofibers that operates at room temperature (26°C). The optical properties of the polyaniline layer changes when it is exposed to ammonia, leading to a change in the absorption of evanescent field. The fiber sensor was tested by exposing it to ammonia at different concentrations and the absorbance is measured using a spectrophotometer system. Measured response and recovery times are about 2.27 minutes and 9.73 minutes, respectively. The sensor sensitivity can be controlled by adjusting the tapered fiber diameter and the highest sensitivity is achieved when the diameter is reduced to 20 µm.
Ethanol is a highly combustible chemical universally designed for biomedical applications. In this paper, optical sensing performance of tapered multimode fiber tip coated with carbon nanotube (CNT) thin film towards aqueous ethanol with different concentrations is investigated. The tapered optical multimode fiber tip is coated with CNT using drop-casting technique and is annealed at 70 °C to enhance the binding of the nanomaterial to the silica fiber tip. The optical fiber tip and the CNT sensing layer are micro-characterized using FESEM and Raman spectroscopy techniques. When the developed sensor was exposed to different concentrations of ethanol (5% to 80%), the sensor reflectance reduced proportionally. The developed sensors showed high sensitivity, repeatability and fast responses (<55 s) towards ethanol.
Tapered optical fibers coated with graphene and graphene oxide (GO) as the active layer for ethanol sensing were reported. The multimode optical fiber with 125 µm diameter was tapered to 40 µm diameter to enhance the sensitivity. Graphene and GO thin films were characterized using a scanning electron microscopy, Raman spectroscopy and ultravioletvisible (UV-Vis) spectroscopy. The absorbance properties of the developed sensors increased when exposed to ethanol due to the change of light in the evanescent field. The sensing results indicated that the GO-coated sensor showed better performance with absorbance change of 80 % towards ethanol concentration of 5 % when compared to graphene-coated sensor with 40 % absorbance change towards ethanol with similar concentrations. The reliable response of the graphene and GO-coated on tapered fibers for detecting ethanol concentrations was achieved at room temperature.
In this work, optical sensing performance of tapered multimode fiber tip coated with graphene oxide (GO) nanostructured thin film towards aqueous ethanol with different concentrations is investigated. The tapering process of the optical fiber is done by a glass processing machine. The multimode optical fiber tip is dip-coated with GO and annealed at 70 °C to enhance the binding of the nanomaterials to the silica fiber. FESEM, Raman microscopy and XRD analyses are performed to micro-characterize the GO thin films. The morphology of the GO is observed to be in sheets forms. The reflectance response of the GO coated fiber tip is compared with the uncoated tip. The measurements are taken using a spectrophotometer in the optical wavelength range of 550-720 nm. The reflectance response of the GO coated fiber tip reduced proportionally, upon exposure to ethanol with concentration range of 5-80%. The dynamic response of the developed sensor showed strong reversibility and repeatability when it is exposed to ethanol with concentrations of 5%, 20% and 40% in distilled water. At room temperature, the sensor shows fast response and recovery as low as 19 and 25 s, respectively.
Ethanol is a highly flammable chemical and is widely used for medical and industrial applications. In this paper, optical sensing performance of aqueous ethanol with different concentrations is investigated using multimode fiber coated with carbon nanotubes (CNT). The multimode optical fiber tip is coated with CNT via a drop-casting technique and is annealed at 70 C to improve the binding of the nanomaterial to the silica fiber. The optical fiber tip and the CNT sensing layer are microcharacterized using field emission scanning electron microscopy, Raman spectroscopy, and X-ray diffraction techniques. The reflectance response of the developed fiber sensor is measured using a spectrophotometer in the optical wavelength range of 500-800 nm. Upon exposure to ethanol with concentration ranges of 5%-80%, the sensor reflectance reduced proportionally. The dynamic response decreased by 4% when the sensor is exposed to ethanol with concentration of 80% in distilled water. It is found that the sensor shows fast response and recovery as low as 38 and 49 s, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.