This work aims to provide a statistical analysis of metal removal during the Magnetic Abrasive Finishing process (MAF) and find out the mathematical model which describes the relationship between the process parameters and metal removal, also estimate the impact of the parameters on metal removal. In this study, the single point incremental forming was used to form the truncated cone made of low carbon steel (1008-AISI) based on the Z-level tool path. Then the finishing was accomplished using a magnetic abrasive process based on the Box-Behnken design of the experiment using Minitab 17 software was used to finish the surface of the formed truncated cone. The influences of different parameters (feed rate, machining step size, coil current, and spindle speed) on metal removal were (32.948, 21.896, 10.587, and 13.907) %, respectively.
In this paper the Magnetic Abrasive Finishing (MAF) was utilized after Single Point Incremental Forming (SPIF) process as a combined finishing process. Firstly, the Single Point Incremental forming was form the truncated cone made from low carbon steel (1008-AISI) based on Z-level tool path then the magnetic abrasive finishing process was applied on the surface of the formed product. Box-Behnken design of experiment in Minitab 17 software was used in this study. The influences of different parameters (feed rate, machining step size, coil current and spindle speed) on change in Micro-Vickers hardness were studied. The maximum and minimum change in Micro-Vickers hardness that achieved from all the experiments were (40.4 and 1.1) respectively. The contribution percent of (feed rate, machining step size, coil current and spindle speed) were (7.1, 18.068, 17.376 and 37.894) % respectively. After MAF process all the micro surface cracks that generated on the workpiece surface was completely removed from the surface.
This work is focused on some affecting parameters in Wire electrical discharge machining process for AISI 1012 steel by using brass wire and zinc coated brass wire with 0.25mm diameter. Pulse on time, pulse off time, spark gap voltage and servo feed had been studied as input parameters while wire wear ratio, metal removal rate and surface roughness were the outputs. The experiments showed that increasing pulse on time would increase wire wear ratio, metal removal rate and surface roughness. While, increasing pulse off time, spark gap voltage and servo feed will cause a little increase in wire wear ratio, decrease metal removal rate and improve surface roughness. Artificial Neural Network had been used to predict the process outputs for 16 samples, which gave good results and agreement with experimental results. Analysis of Variance had been used to find the contribution of the process parameters on outputs.
Increase the demand to produce complex shapes with high quality and dimensional accuracy such as production aerospace, cars, die sinking has been leading to increase the demand to use the non- traditional cutting operations such as wire electro-discharge machine (WEDM) rather than using the traditional operations. An idea to understand the effect of wire diameter, wire feed, pulsing (on/off) time on surface roughness, and metal removal rate of Cr-Mo steel during wire electrical discharge machining was investigated. Two Steel alloy samples with dimensions of (60 x50 x 20)mm were cut into four rectangular spaces with (5x10x20)mm at one side of each sample using wire cut (EDM) machine with a wire diameter of 0.25 mm and feeding rate 2 m/min for sample 1 and a 0.3 mm diameter and 3 m/min feeding rate for sample 2. Pulse (on, off) time was (110, 50), (112, 52), (115, 55), (116, 57) corresponds to space 1, space 2, space 3, and space 4 in both steel block. Surface roughness and metal removal rate measurements were estimated. The results showed that wire diameter, feeding rate, and pulse (on, off) time is proportional with metal removal rate, while reversed with surface roughness. The wire diameter of 0.3 mm and a feeding rate of 3m/min enhanced better surface quality and productivity. Pulse (on, off) time is the most effective parameter. Best duration time was recorded at the values (116, 57).
Electro discharge machining (EDM) is one of a thermal process that is used for remove of metal from the workpiece by spark erosion. The work of this machine depends on multiple variables. One of the more influential variants on this machine is the change of polarity and the use of this variable is not wide and the research depends on the polarity of the machinist. Essentially, the polarity of the tool (electrode) is positive and the workpiece is negative, this polarity can be reversed. This paper focuses on the influence of changing the polarity (positive and negative) on the surface roughness and metal removal rate by using different parameters (current, voltages, polarity and Ton). Experiments show that the positive electrode gives (best surface roughness = 1.56 µm when the current = 5 Am and Ton = 5.5 µs) and (best metal removal rate = 0.0180 g/min when the current = 8 Am and Ton = 25 µs). Negative electrode gives (best surface roughness = 0.46 µm when the current = 5 Am and Ton = 5.5 µs) and (best metal removal rate = 0.00291 g/min when the current = 8 Am and Ton = 25 µs).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.