Increased heme oxygenase (HO)-1 activity attenuates endothelial cell apoptosis and decreases superoxide anion (O2-) formation in experimental diabetes by unknown mechanisms. We examined the effect of HO-1 protein and HO activity on extracellular SOD (EC-SOD), catalase, O2-, inducible nitric oxide synthase (iNOS), and endothelial nitric oxide synthase (eNOS) levels and vascular responses to ACh in control and diabetic rats. Vascular EC-SOD and plasma catalase activities were significantly reduced in diabetic compared with nondiabetic rats (P < 0.05). Upregulation of HO-1 expression by intermittent administration of cobalt protoporphyrin, an inducer of HO-1 protein and activity, resulted in a robust increase in EC-SOD but no significant change in Cu-Zn-SOD. Administration of tin mesoporphyrin, an inhibitor of HO-1 activity, decreased EC-SOD protein. Increased HO-1 activity in diabetic rats was associated with a decrease in iNOS but increases in eNOS and plasma catalase activity. On the other hand, aortic ring segments from diabetic rats exhibited a significant reduction in vascular relaxation to ACh, which was reversed with cobalt protoporphyrin treatment. These data demonstrate that an increase in HO-1 protein and activity, i.e., CO and bilirubin production, in diabetic rats brings about a robust increase in EC-SOD, catalase, and eNOS with a concomitant increase in endothelial relaxation and a decrease in O2-. These observations in experimental diabetes suggest that the vascular cytoprotective mechanism of HO-1 against oxidative stress requires an increase in EC-SOD and catalase.
Background-Apolipoprotein A1 mimetic peptide, synthesized from D-amino acid (D-4F), enhances the ability of HDL to protect LDL against oxidation in atherosclerotic animals. Methods and Results-We investigated the mechanisms by which D-4F provides antioxidant effects in a diabetic model.Sprague-Dawley rats developed diabetes with administration of streptozotocin (STZ). We examined the effects of daily D-4F (100 g/100 g of body weight, intraperitoneal injection) on superoxide (O 2 Ϫ ), extracellular superoxide dismutase (EC-SOD), vascular heme oxygenase (HO-1 and HO-2) levels, and circulating endothelial cells in diabetic rats. In response to D-4F, both the quantity and activity of HO-1 were increased. O 2 Ϫ levels were elevated in diabetic rats (74.8Ϯ8ϫ10 3 cpm/10 mg protein) compared with controls (38.1Ϯ8ϫ10 3 cpm/10 mg protein; PϽ0.01). D-4F decreased O 2 Ϫ levels to 13.23Ϯ1ϫ10 3 (PϽ0.05 compared with untreated diabetics). The average number of circulating endothelial cells was higher in diabetics (50Ϯ6 cells/mL) than in controls (5Ϯ1 cells/mL) and was significantly decreased in diabetics treated with D-4F (20Ϯ3 cells/mL; PϽ0.005). D-4F also decreased endothelial cell fragmentation in diabetic rats. The impaired relaxation typical of blood vessels in diabetic rats was prevented by administration of D-4F (85.0Ϯ2.0% relaxation). Western blot analysis showed decreased EC-SOD in the diabetic rats, whereas D-4F restored the EC-SOD level. Conclusions-We conclude that an increase in circulating endothelial cell sloughing, superoxide anion, and vasoconstriction in diabetic rats can be prevented by administration of D-4F, which is associated with an increase in 2 antioxidant proteins, HO-1 and EC-SOD.
A precise balance between protein degradation and synthesis is essential to preserve skeletal muscle mass. Here, we found that TP53INP2, a homolog of the Drosophila melanogaster DOR protein that regulates autophagy in cellular models, has a direct impact on skeletal muscle mass in vivo. Using different transgenic mouse models, we demonstrated that muscle-specific overexpression of Tp53inp2 reduced muscle mass, while deletion of Tp53inp2 resulted in muscle hypertrophy. TP53INP2 activated basal autophagy in skeletal muscle and sustained p62-independent autophagic degradation of ubiquitinated proteins. Animals with muscle-specific overexpression of Tp53inp2 exhibited enhanced muscle wasting in streptozotocin-induced diabetes that was dependent on autophagy; however, TP53INP2 ablation mitigated experimental diabetes-associated muscle loss. The overexpression or absence of TP53INP2 did not affect muscle wasting in response to denervation, a condition in which autophagy is blocked, further indicating that TP53INP2 alters muscle mass by activating autophagy. Moreover, TP53INP2 expression was markedly repressed in muscle from patients with type 2 diabetes and in murine models of diabetes. Our results indicate that TP53INP2 negatively regulates skeletal muscle mass through activation of autophagy. Furthermore, we propose that TP53INP2 repression is part of an adaptive mechanism aimed at preserving muscle mass under conditions in which insulin action is deficient.
Heme oxygenase-1 (HO-1) and -2 play an important role in cytoprotection and are physiologic regulators of heme-dependent protein synthesis in renal tissues. The impact of HO-2 deletion comparing hyperglycemic HO-2 (؉/؉) mice and HO-2 knockout (؊/؊) mice was examined. Hyperglycemia was induced by streptozotocin (STZ) injection, and its effect on renal HO-1/HO-2 protein, HO activity, and creatinine levels were assessed. The effect of HO induction using systemic administration of the HO inducers heme or cobalt protoporphyrin and the effect of HO inhibition using systemic administration of the HO inhibitor tin mesoporphyrin also were assessed in STZ-treated mice. In STZ-treated HO-2 (؊/؊) mice, there was marked renal functional impairment as reflected by an increase in plasma creatinine, associated with acute tubular damage and microvascular pathology as compared with HO-2 (؉/؉). In these animals, HO activity was decreased with a concomitant increase in superoxide anion. Upregulation of HO-1 in HO-2 (؊/؊) mice by weekly administration of cobalt protoporphyrin prevented the increase in plasma creatinine levels and tubulointerstitial and microvascular pathology. Inhibition of HO activity by administration of tin mesoporphyrin accentuated superoxide production and increased creatinine levels in hyperglycemic HO-2 (؊/؊) mice. In conclusion, HO-2 deficiency enhanced STZ-induced renal dysfunction and morphologic injury and HO-1 upregulation in HO-2 (؊/؊) mouse rescue and prevented the morphologic damage. These observations indicate that HO activity is essential in preserving renal function and morphology in STZ-induced diabetic mice probably via mitigation of concomitant oxidative stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.