An automated electro-pneumatic soil sampling method based on pressurized air for real-time soil analysis was developed and tested under laboratory conditions. Pressurized air was applied for 36 ms across a 2.5 cm diameter cylinder to cut a sample from a soil column and convey the sample along a delivery pipe into a container. An electro-pneumatic regulator valve was used to regulate the air pressure at 550, 690, and 830 kPa (80, 100, and 120 psi) using an analog electrical signal. A two-position solenoid valve controlled by a stand-alone microprocessor was used to control pulse duration. Laboratory tests were conducted to determine the effectiveness of positive high-pressure air as a cutting force for different soil conditions. The effects of air pressure level, soil moisture content, soil compaction, and soil type on the quantity of soil sample obtained were investigated. Moisture content and air pressure level were the most significant factors, while compaction was not significant (a = 0.05) in terms of mass of soil obtained. Laboratory test results proved that pressurized air was effective in cutting and transporting a soil sample in a short time period (36 ms) for all different soils studied in this experiment. The electro-pneumatic method was also capable of obtaining a consistent amount of soil sample with a coefficient of variation of less than 20% for any individual treatments in the experimental design. The electro-pneumatic soil sampling method is a viable candidate as a soil sampling system for on-the-go soil analysis.
2020 yılında Dünya genelinde 27,5 milyon ton, Türkiye de 279,5 bin ton kuru fasulye üretilmiştir. Kuru fasulye geniş bir çeşitliliğe sahiptir. Bir çeşidi soğuk iklim koşullarında verimli olabilirken, bir çeşidi daha ılıman iklim koşullarında verimli olabilmektedir. Günümüzde kuru fasulye tohumları arasında farklı çeşitlere ait kuru fasulye tohumları karışabilmektedir. Bu durum kuru fasulye verimini olumsuz etkilemektedir. Bitkisel üretimde tohum kalitesi önemlidir. Bu nedenle tohum sınıflandırılması sürdürülebilir tarım ve verimlilik için önemlidir. Kuru fasulye sınıflandırılası günümüzde elekler yardımı ile yapılmaktadır. Elek ile sınıflandırma yönteminin dezavantajları fasulyenin çeşidini, kırık ve bozuk fasulyeleri tespit edememektedir. Hassas tohum seçimi yapılabilmesi için yeni teknolojilere ihtiyaç duyulmaktadır. Bu çalışmanın amacı kuru fasulyenin sınıflandırılması için yapay zekâ tabanlı bir model geliştirmektir. Çalışmada yedi çeşit 13.611 adet kuru fasulye örneği kullanılmıştır. Veriler dengesiz dağılması sebebiyle, öncelikle en az sınıfa ait veri sayısı (522) kadar dengelenmiş ve 3654 adet kuru fasulye örneği seçilmiştir. Fasulyelere ait 16 morfolojik özellik bulunmaktadır. Özellik seçme algoritması yardımıyla özellikler seçilerek performans artırımı amaçlanmıştır. Geliştirilen en iyi model performans değeri doğruluk oranı %98,2 ve AUC 1, PPV %100, TPR %100’dir. Elde edilen sonuçlara göre kuru fasulye tohumlarının yüksek başarı oranı ile sınıflandırılabileceği değerlendirilmektedir.
The objective of this study was to develop and test an automated extractant providing method utilizing pressurized air in a laboratory setting. Pressurized air was applied to extractant holder filled with extractant. An electro-pneumatic regulator valve was used to regulate the air pressure at 344.75, 551.6, and 758.45 kPa using an analog electrical signal. A two-position solenoid valve that was controlled via Labview software according to pre-specified time interval was used to provide a high pressure pulse at known durations to the extractant column inside the holder. The mass of extractant transported to the mixing unit during a single air pulse was measured and recorded for all treatments in the experimental design. Analysis of variance was performed to determine significance of each variable, namely pulse duration and air pressure.Step wise linear regression analysis was used to develop calibration models for the prediction of extractant mass. The only significant factor was pulse duration while pressure was insignificant (α= 0.05) on extractant mass for all treatments. Pulse duration was used to find a model to predict extractant mass, and provided a very good prediction (R 2 = 0.99) at fixed pressure setting. Laboratory test results proved that pressurized air was effective in obtaining known quantity of extractant. The electro-pneumatic method was capable of obtaining and transporting a precise amount of extractant needed for on-the-go soil nitrate analysis within a short time (less than 100 ms) with a coefficient of variation of less than 3%. It was concluded that the electro-pneumatic method was a viable candidate to be a precise variable extractant supply method for on-the-go soil analysis system. ÖZETBu çalışmanın amacı, basınçlı hava ile çalışan bir otomatik ektstraktan sağlama yöntemi geliştirmek ve laboratuvar koşullarında test etmektir. Hazne içindeki ekstraktant yüzeyine basınçlı hava uygulanarak hazne basınçlandırılmıştır.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.