BackgroundLong noncoding RNAs (lncRNAs) are a recently discovered class of non-protein coding RNAs, which have now increasingly been shown to be involved in a wide variety of biological processes as regulatory molecules. The functional role of many of the members of this class has been an enigma, except a few of them like Malat and HOTAIR. Little is known regarding the regulatory interactions between noncoding RNA classes. Recent reports have suggested that lncRNAs could potentially interact with other classes of non-coding RNAs including microRNAs (miRNAs) and modulate their regulatory role through interactions. We hypothesized that lncRNAs could participate as a layer of regulatory interactions with miRNAs. The availability of genome-scale datasets for Argonaute targets across human transcriptome has prompted us to reconstruct a genome-scale network of interactions between miRNAs and lncRNAs.ResultsWe used well characterized experimental Photoactivatable-Ribonucleoside-Enhanced Crosslinking and Immunoprecipitation (PAR-CLIP) datasets and the recent genome-wide annotations for lncRNAs in public domain to construct a comprehensive transcriptome-wide map of miRNA regulatory elements. Comparative analysis revealed that in addition to targeting protein-coding transcripts, miRNAs could also potentially target lncRNAs, thus participating in a novel layer of regulatory interactions between noncoding RNA classes. Furthermore, we have modeled one example of miRNA-lncRNA interaction using a zebrafish model. We have also found that the miRNA regulatory elements have a positional preference, clustering towards the mid regions and 3′ ends of the long noncoding transcripts. We also further reconstruct a genome-wide map of miRNA interactions with lncRNAs as well as messenger RNAs.ConclusionsThis analysis suggests widespread regulatory interactions between noncoding RNAs classes and suggests a novel functional role for lncRNAs. We also present the first transcriptome scale study on miRNA-lncRNA interactions and the first report of a genome-scale reconstruction of a noncoding RNA regulatory interactome involving lncRNAs.
Long non-coding RNAs (lncRNA) represent an assorted class of transcripts having little or no protein coding capacity and have recently gained importance for their function as regulators of gene expression. Molecular studies on lncRNA have uncovered multifaceted interactions with protein coding genes. It has been suggested that lncRNAs are an additional layer of regulatory switches involved in gene regulation during development and disease. LncRNAs expressing in specific tissues or cell types during adult stages can have potential roles in form, function, maintenance and repair of tissues and organs. We used RNA sequencing followed by computational analysis to identify tissue restricted lncRNA transcript signatures from five different tissues of adult zebrafish. The present study reports 442 predicted lncRNA transcripts from adult zebrafish tissues out of which 419 were novel lncRNA transcripts. Of these, 77 lncRNAs show predominant tissue restricted expression across the five major tissues investigated. Adult zebrafish brain expressed the largest number of tissue restricted lncRNA transcripts followed by cardiovascular tissue. We also validated the tissue restricted expression of a subset of lncRNAs using independent methods. Our data constitute a useful genomic resource towards understanding the expression of lncRNAs in various tissues in adult zebrafish. Our study is thus a starting point and opens a way towards discovering new molecular interactions of gene expression within the specific adult tissues in the context of maintenance of organ form and function.
The advent of high-throughput genome scale technologies has enabled us to unravel a large amount of the previously unknown transcriptionally active regions of the genome. Recent genome-wide studies have provided annotations of a large repertoire of various classes of noncoding transcripts. Long noncoding RNAs (lncRNAs) form a major proportion of these novel annotated noncoding transcripts, and presently known to be involved in a number of functionally distinct biological processes. Over 18 000 transcripts are presently annotated as lncRNA, and encompass previously annotated classes of noncoding transcripts including large intergenic noncoding RNA, antisense RNA and processed pseudogenes. There is a significant gap in the resources providing a stable annotation, cross-referencing and biologically relevant information. lncRNome has been envisioned with the aim of filling this gap by integrating annotations on a wide variety of biologically significant information into a comprehensive knowledgebase. To the best of our knowledge, lncRNome is one of the largest and most comprehensive resources for lncRNAs.Database URL: http://genome.igib.res.in/lncRNome
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.