To investigate the effect of exogenously applied 28-homobrassinolide (HBL) on drought-stressed plants, photosynthesis and antioxidant systems were examined in Indian mustard (Brassica juncea L.). Seedlings of Indian mustard were subjected to drought stress for 7 days at the 8-14 (DS1)/15-21 (DS2) days' stage of growth and then returned to normal conditions of growth. These seedlings were sprayed with HBL (0.01 lM) at the 30-day stage and were sampled at 60 days to assess the changes in growth, photosynthesis and antioxidant enzymes. Plants exposed to stress at either of the stages of growth exhibited a significant decrease in growth and photosynthesis. The exposure of plants to stress at an earlier stage (DS1) was more inhibitory than that at a later stage (DS2). However, the follow-up treatment with HBL significantly improved the values of these parameters and also overcame the inhibitory effect of water stress.
The effect of bromocriptine, a dopamine agonist, administered in the form of bromocriptine alginate nanocomposite (BANC) was studied on Parkinson's disease (PD) model flies. The synthesized BANC was subject to characterization and, at a final concentration of 0.5, 1.0 and 1.5 µM, was mixed in diet. The PD flies were allowed to feed on it for 24 days. A significant dose-dependent delay in the loss of climbing activity and activity pattern was observed in PD flies exposed to 0.5, 1.0 and 1.5 µM BANC. The PD flies exposed to BANC also showed a significant reduction in lipid peroxidation and glutathione-S-transferase activity, and an increase in glutathione content. However, no gross morphological changes were observed in the brains of PD flies compared with controls. The results suggest that BANC is effective in reducing the PD symptoms in these transgenic flies.
The role of Centella asiatica L. leaf extract was studied on the transgenic Drosophila model flies expressing normal human alpha synuclein (h-αS) in the neurons. The leaf extract was prepared in acetone and was subjected to GC-MS analysis. C. asiatica extract at final concentration of 0.25, 0.50, and 1.0 μL/mL was mixed with the diet and the flies were allowed feeding on it for 24 days. The effect of extract was studied on the climbing ability, activity pattern, lipid peroxidation, protein carbonyl content, glutathione content, and glutathione-S-transferase activity in the brains of transgenic Drosophila. The exposure of extract to PD model flies results in a significant delay in the loss of climbing ability and activity pattern and reduced the oxidative stress (P < 0.05) in the brains of PD flies as compared to untreated PD flies. The results suggest that C. asiatica leaf extract is potent in reducing the PD symptoms in transgenic Drosophila model of Parkinson's disease.
In the present study the graphene zinc oxide nanocomposite (GZNC) was synthesized, characterized, and evaluated for its toxic potential on third instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ)Bg
9. The synthesized GZNC was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The GZNC in 0.1% dimethyl sulphoxide (DMSO) was sonicated for 10 minutes and the final concentrations 0.033, 0.099, 0.199, and 3.996 μg/μL of diet were established. The third instar larvae were allowed to feed on it separately for 24 and 48 hr. The hsp70 expression was measured by o-nitrophenyl-β-D-galactopyranoside assay, tissue damage was measured by trypan blue exclusion test, and β-galactosidase activity was monitored by in situ histochemical β-galactosidase staining. Oxidative stress was monitored by performing lipid peroxidation assay and total protein estimation. Ethidium bromide/acridine orange staining was performed on midgut cells for apoptotic index and the comet assay was performed for the DNA damage. The results of the present study showed that the exposure of 0.199 and 3.996 μg/μL of GZNC was toxic for both 24 hr and 48 hr of exposure. The doses of 0.033 μg/μL and 0.099 of GZNC showed no toxic effects on its exposure to the third instar larvae for 24 hr as well as 48 hr of duration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.