The main purpose of this study is to investigate the multislip effects on the magneto-hydrodynamic (MHD) mixed convection unsteady flow of micropolar nano-fluids over a stretching/shrinking sheet along with radiation in the presence of a heat source. The consequences of multislip and buoyancy conditions have been integrated. By using the suitable similarity variables are used to solve the governing non-linear partial differential equations into a system of coupled non-linear ordinary differential equations. The transformed equations are solved numerically by using Runge–Kutta fourth-order method with shooting technique. The impacts of the several parameters on the velocity, temperature, micro-rotation, and concentration profiles as well as on the skin friction coefficient, Sherwood number, and Nusselt number are discussed with the help of graphs and tables.
Pyrazinamide (PZA) is the first-line drug commonly used in treating Mycobacterium tuberculosis (Mtb) infections and reduces treatment time by 33%. This prodrug is activated and converted to an active form, Pyrazinoic acid (POA), by Pyrazinamidase (PZase) enzyme. Mtb resistance to PZA is the outcome of mutations frequently reported in pncA, rpsA, and panD genes. Among the mentioned genes, pncA mutations contribute to 72–99% of the total resistance to PZA. Thus, considering the vital importance of this gene in PZA resistance, its frequent mutations (D49N, Y64S, W68G, and F94A) were investigated through in-depth computational techniques to put conclusions that might be useful for new scaffolds design or structure optimization to improve the efficacy of the available drugs. Mutants and wild type PZase were used in extensive and long-run molecular dynamics simulations in triplicate to disclose the resistance mechanism induced by the above-mentioned point mutations. Our analysis suggests that these mutations alter the internal dynamics of PZase and hinder the correct orientation of PZA to the enzyme. Consequently, the PZA has a low binding energy score with the mutants compared with the wild type PZase. These mutations were also reported to affect the binding of Fe2+ ion and its coordinated residues. Conformational dynamics also revealed that β-strand two is flipped, which is significant in Fe2+ binding. MM-GBSA analysis confirmed that these mutations significantly decreased the binding of PZA. In conclusion, these mutations cause conformation alterations and deformities that lead to PZA resistance.
This study investigated the boundary layer flow and heat transfer aspects of a nanofluid over a porous plate with thermal radiation.Using suitable similarity transformations,partial differential equations were converted into ordinary differential equations and then solved numerically with the help of the Runge-Kutta scheme. The effects of various parameters were analyzed such as Prandtl number 𝑃𝑟, Lewis number 𝐿𝑒, Thermophoresis 𝑁𝑡, Mixed convection parameter λ,Brownianmotion 𝑁𝑏, Magnetic parameter M, and Suction/Blowing parameter S. The results were depicted with the help of graphs.
The nanoparticles used in nanofluid are prepared for carbides and oxides. In this paper, a nanofluid flow over a stretching sheet in the presence of viscous dissipation, heat source, and magnetic field was numerically explored with the help of the Runge-Kutta shooting technique and the effects of various parameters were analyzed using graphical representation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.