In this study, biocomposites as feedstock material for 3D printing were produced by poly (lactic acid) (PLA) as a polymer matrix and Hydroxyapatite (HAP) as reinforcing filler for potential use in biomedical applications. Biocomposites filament from PLA and different HAP content varying from 1–10 wt% were prepared from extrusion and then injection moulding process. The impact of HAP loading on the properties of biocomposites was investigated for crystallinity, density, hardness, tensile, impact, flexural, melt flow index (MFI), thermal properties and biomineralization studies. The formation of PLA/HAP biocomposites was confirmed by fourier transform infrared spectroscopy (FTIR). The hydrophilicity of the biocomposites was studied by contact angle analysis. Dispersion of HAP into PLA matrix was confirmed by scanning electron microscopy (SEM) and optical microscopy. The HAP addition increased the density of the composites. From mechanical analysis PLA/HAP composites containing 1–5 wt% showed an increase in tensile modulus. The Shore D hardness of the composites increased with increase in wt% of HAP content. The maximum hardness was achieved for 10 wt% of HAP content i.e., 87 ± 0.1, which is about 6.1% more than neat PLA. The MFI increased with rise in HAP content that gives a positive opinion of reinforcing PLA composites without deteriorating the processability. The hydrophilicity of the biocomposites was slightly increased after the addition of HAP. From thermal analysis it was concluded that the thermal stability of the biocomposites increased when compared with neat PLA. From the Biomineralization studies formation of apatite layer on PLA composites was confirmed by SEM analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.