A rigorous microscopic treatment of a nematic fluid system based on a pairwise interaction potential is immensely complex. For studying such systems molecular field theories are often the standard method of choice. In this paper we have chosen a simple effective potential U=u_{4}/v^{4}-u_{2}/v^{2}-Au_{2}/v^{2}〈P_{2}〉P_{2}(cosϑ) to study an isothermal-isobaric ensemble describing a liquid crystalline system. Using this we have studied in particular the pressure dependence of liquid crystalline phase transitions.
Extensive Monte Carlo simulations are performed to investigate the critical properties of a special singular point usually known as the Landau point. The singular behavior is studied in the case when the order parameter is a tensor of rank 2. Such an order parameter is associated with a nematic-liquid-crystal phase. A three-dimensional lattice dispersion model that exhibits a direct biaxial nematic-to-isotropic phase transition at the Landau point is thus chosen for the present study. Finite-size scaling and cumulant methods are used to obtain precise values of the critical exponent ν=0.713(4), the ratio γ/ν=1.85(1), and the fourth-order critical Binder cumulant U^{*}=0.6360(1). Estimated values of the exponents are in good agreement with renormalization-group predictions.
Since a rigorous microscopic treatment of a nematic fluid system based on a pairwise interaction potential is immensely complex, we had introduced a simple mean field potential, which was a modification of the Maier–Saupe potential in a previous paper [S. DasGupta et al., “Pressure-induced phase transitions in liquid crystals: A molecular field approach,” Phys. Rev. E 98, 022701 (2018)]. Building upon that, here we have modified that potential to take into account the various aspects of a smectic A–nematic phase transition. In particular, we have studied the dependence of the phase transition on the coupling coefficient between the nematic and smectic order parameters, which in turn depends on the length of alkyl chain, variation of density, entropy, and specific heat. Detailed investigation on the coupling parameter shows the existence of a smectic A–nematic–isotropic triple point as well as a tricritical point where the smectic–nematic phase transition changes its nature from the second to the first order. It is also seen that the application of pressure can result in the appearance of a nematic phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.