In spite of its success to inhibit plasmodium induced permeation pathway and the potential of merozoites to invade new RBCs, its anti-plasmodium effect can't be attributed to these functions as they were attained at concentrations higher than what is required to eradicate the parasite. Consequently, other mechanisms may be associated with its claimed actions.
Background:Emergence of chloroquine (CQ) resistance among different strains of Plasmodium falciparum is the worst catastrophe that has ever perplexed the dedicated efforts to eradicate malaria. This urged the scientists to search for new alternatives or sensitizers to augment its antiplasmodium effect.Materials and Method:In this experiment, the potential of embelin, isolated from Embelia ribes, to inhibit the growth and sensitize CQ action was screened using SYBRE-green-I based drug sensitivity and isobologram assays, respectively. Its effect on red blood cells stability was screened to assess its safety. To explore its molecular mechanism, its effect on plasmodial Hemozoin and the in vitro β-hematin formation was screened as well. Furthermore, its anti-oxidant activity was measured using the conventional in vitro tests and its molecular characters were obtained using Molispiration program.Results:The results showed that its anti-plasmodial effect was weaker than CQ but synergism was obtained when they were combined at ratios lower than 5:5 CQ/embelin. Furthermore, β-hematin formation was inhibited by embelin without showing any synergism after mixing with CQ.Conclusion:Overall, embelin is not ideal to be suggested as a conventional antiplasmodium but it has a potential to ameliorate CQ resistance. Furthermore, its action is not related to its impact on hemozoin formation. Further, investigations are recommended to illustrate its detailed mechanism of action.Abbreviation used: CQ-DV-PBS-HEPES: Chloroquine-Digestive vacuole-Phosphate-buffer-saline-4-(2-hydroxyethyl-1-piperazin-ethan-sulphoni-acid), EDTA: Ethylen-diamin-tetra-acetic-acid, g.m.wt: Gram molecular weight, cMCM: Complete-malaria-culture-medium, Hct: Hematocrite, PRBCs: Parasitized-redblood-cells, nRBCs: Normal-red-blood-cells, RT: Room temperature, IC: Inhibitory concentration, FIC: Fractional inhibitory concentration, iCM: Incomplete-culturemedium, BSA: Bovin serum albumin, MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, DPPH: 2,2-diphenyl-1- picrylhydrazy, BHT: Butylatedhydroxyl-toleuen, PSA: Polar surface area, ClogP: Log partition coefficient (octanol/water), GPCR: G-protein-coupled-receptors, DMSO: Dimethylsulphoxide, NaOH: Sodium hydroxide
In vitro antiplasmodium and chloroquine resistance reversal effects of mangostin ABSTRACT Aim/Background: Chloroquine (CQ) resistance that appeared among different strains of Plasmodium falciparum is considered as the worst catastrophe in the realm of malaria chemotherapy. CQ is still the most favorable drug among other antimalarials especially in the poor endemic areas due to its high potency and cost-effectiveness. This urged the scientists to explore for other alternatives or sensitizers for CQ. Materials and Methods: In this experiment, the antiplasmodium and the CQ resistance reversing effects of mangostin were tested using the in vitro SYBRE green-1-based drug sensitivity assay and the isobologram technique, respectively. Furthermore, its safety level toward two types of mammalian cells, namely Vero cells and red blood cells (RBCs), was screened using the 3-(4,5-dimethylthiazol-2-yl)-2,5diphenyltetrazolium bromide-based drug sensitivity and the RBCs hemolysis assays, respectively. On the other hand, its effect against hemozoin formation was screened using βhematin formation. Meanwhile, its molecular characters were determined the in silico on-line free chemi-informatic Molinspiration software for the molecular characterization as well as the standard testes for the measurement of the antioxidant effect. Results: Mangostin was moderately effective and selective toward the plasmodium so it is unsuitable to be a substituent for CQ. But it improved the sensitivity of the parasite to CQ. The molecular elucidation suggests that its CQ resistance reversal effect can be ascribed to its ability to interfere with hemozoin formation or the intravacuolar accumulation of CQ. Conclusion: Overall, the study suggests mangostin as a possible pharmacophore to develop new CQ resistance reversing agents but further studies are recommended to confirm this notion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.