In order to see the dynamics of prey-predator interaction, differential or difference equations are frequently used for modeling of such interactions. In present manuscript, we explore some qualitative aspects of two-dimensional ratio-dependent predator-prey model. Taking into account the non-overlapping generations for class of predator-prey system, a novel consistency preserving scheme is proposed. Our study reveals that the implemented discretization is bifurcation preserving. Some dynamical aspects including local behavior of equilibria, phase-plane analysis and emergence of Hopf bifurcation for continuous predator-prey model are studied. Moreover, existence of biologically feasible fixed points, their local asymptotic behavior and phase-plane classification of interior (positive) fixed point are carried out. Furthermore, bifurcation theory of normal forms is implemented to prove that proposed discrete-time model undergoes Neimark-Sacker bifurcation around its unique positive fixed point. Taking into account the bifurcating and fluctuating behaviour of discrete system, three chaos control strategies are implemented. Numerical simulations are provided to illustrate the theoretical discussion and effectiveness of introduced chaos control methods. INDEX TERMS Prey-predator interaction; stability analysis; Neimark-Sacker bifurcation; chaos control.
In this paper, we obtain a new series representation for the generalized Bose–Einstein and Fermi–Dirac functions by using fractional Weyl transform. To achieve this purpose, we obtain an analytic continuation for these functions by generalizing the domain of Riemann zeta functions from ( 0 < ℜ ( s ) < 1 ) to ( 0 < ℜ ( s ) < μ ) . This leads to fresh insights for a new generalization of the Riemann zeta function. The results are validated by obtaining the classical series representation of the polylogarithm and Hurwitz–Lerch zeta functions as special cases. Fractional derivatives and the relationship of the generalized Bose–Einstein and Fermi–Dirac functions with Apostol–Euler–Nörlund polynomials are established to prove new identities.
Abdeljawad et al. (2018) introduced a new concept, named double controlled metric type spaces, as a generalization of the notion of extended b-metric spaces. In this paper, we extend their concept and introduce the concept of double controlled quasi-metric type spaces with two incomparable functions and prove some unique fixed point results involving new types of contraction conditions. Also, we introduce the concept of α−μ−k double controlled contraction and prove some related fixed point results. We give several examples to show that our results are the proper generalization of the existing works.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.