As countries move towards malaria elimination, methods to identify infections among populations who do not seek treatment are required. Reactive case detection, whereby individuals living in close proximity to passively detected cases are screened and treated, is one approach being used by a number of countries including Swaziland. An outstanding issue is establishing the epidemiologically and operationally optimal screening radius around each passively detected index case. Using data collected between December 2009 and June 2012 from reactive case detection (RACD) activities in Swaziland, we evaluated the effect of screening radius and other risk factors on the probability of detecting cases by reactive case detection. Using satellite imagery, we also evaluated the household coverage achieved during reactive case detection. Over the study period, 250 cases triggered RACD, which identified a further 74 cases, showing the value of RACD over passive surveillance alone. Results suggest that the odds of detecting a case within the household of the index case were significantly higher than in neighbouring households (odds ratio (OR) 13, 95% CI 3.1–54.4). Furthermore, cases were more likely to be detected when RACD was conducted within a week of the index presenting at a health facility (OR 8.7, 95% CI 1.1–66.4) and if the index household had not been sprayed with insecticide (OR sprayed vs not sprayed 0.11, 95% CI 0.03–0.46). The large number of households missed during RACD indicates that a 1 km screening radius may be impractical in such resource limited settings such as Swaziland. Future RACD in Swaziland could be made more effective by achieving high coverage amongst individuals located near to index cases and in areas where spraying has not been conducted. As well as allowing the programme to implement RACD more rapidly, this would help to more precisely define the optimal screening radius.
BackgroundAs successful malaria control programmes move towards elimination, they must identify residual transmission foci, target vector control to high-risk areas, focus on both asymptomatic and symptomatic infections, and manage importation risk. High spatial and temporal resolution maps of malaria risk can support all of these activities, but commonly available malaria maps are based on parasite rate, a poor metric for measuring malaria at extremely low prevalence. New approaches are required to provide case-based risk maps to countries seeking to identify remaining hotspots of transmission while managing the risk of transmission from imported cases.MethodsHousehold locations and travel histories of confirmed malaria patients during 2011 were recorded through routine surveillance by the Swaziland National Malaria Control Programme for the higher transmission months of January to April and the lower transmission months of May to December. Household locations for patients with no travel history to endemic areas were compared against a random set of background points sampled proportionate to population density with respect to a set of variables related to environment, population density, vector control, and distance to the locations of identified imported cases. Comparisons were made separately for the high and low transmission seasons. The Random Forests regression tree classification approach was used to generate maps predicting the probability of a locally acquired case at 100 m resolution across Swaziland for each season.ResultsResults indicated that case households during the high transmission season tended to be located in areas of lower elevation, closer to bodies of water, in more sparsely populated areas, with lower rainfall and warmer temperatures, and closer to imported cases than random background points (all p < 0.001). Similar differences were evident during the low transmission season. Maps from the fit models suggested better predictive ability during the high season. Both models proved useful at predicting the locations of local cases identified in 2012.ConclusionsThe high-resolution mapping approaches described here can help elimination programmes understand the epidemiology of a disappearing disease. Generating case-based risk maps at high spatial and temporal resolution will allow control programmes to direct interventions proactively according to evidence-based measures of risk and ensure that the impact of limited resources is maximized to achieve and maintain malaria elimination.
BackgroundTo guide malaria elimination efforts in Swaziland and other countries, accurate assessments of transmission are critical. Pooled-PCR has potential to efficiently improve sensitivity to detect infections; serology may clarify temporal and spatial trends in exposure.Methodology/Principal FindingsUsing a stratified two-stage cluster, cross-sectional design, subjects were recruited from the malaria endemic region of Swaziland. Blood was collected for rapid diagnostic testing (RDT), pooled PCR, and ELISA detecting antibodies to Plasmodium falciparum surface antigens. Of 4330 participants tested, three were RDT-positive yet false positives by PCR. Pooled PCR led to the identification of one P. falciparum and one P. malariae infection among RDT-negative participants. The P. falciparum-infected participant reported recent travel to Mozambique. Compared to performing individual testing on thousands of samples, PCR pooling reduced labor and consumable costs by 95.5%. Seropositivity was associated with age ≥20 years (11·7% vs 1·9%, P<0.001), recent travel to Mozambique (OR 4.4 [95% CI 1.0–19.0]) and residence in southeast Swaziland (RR 3.78, P<0.001).ConclusionsThe prevalence of malaria infection and recent exposure in Swaziland are extremely low, suggesting elimination is feasible. Future efforts should address imported malaria and target remaining foci of transmission. Pooled PCR and ELISA are valuable surveillance tools for guiding elimination efforts.
Many entomological studies have analyzed remotely sensed data to assess the relationship between malaria vector distribution and the associated environmental factors. However, the high cost of remotely sensed products with high spatial resolution has often resulted in analyses being conducted at coarse scales using open-source, archived remotely sensed data. In the present study, spatial prediction of potential breeding sites based on multi-scale remotely sensed information in conjunction with entomological data with special reference to presence or absence of larvae was realized. Selected water bodies were tested for mosquito larvae using the larva scooping method, and the results were compared with data on land cover, rainfall, land surface temperature (LST) and altitude presented with high spatial resolution. To assess which environmental factors best predict larval presence or absence, Decision Tree methodology and logistic regression techniques were applied. Both approaches showed that some environmental predictors can reliably distinguish between the two alternatives (existence and non-existence of larvae). For example, the results suggest that larvae are mainly present in very small water pools related to human activities, such as subsistence farming that were also found to be the major determinant for vector breeding. Rainfall, LST and altitude, on the other hand, were less useful as a basis for mapping the distribution of breeding sites. In conclusion, we found that models linking presence of larvae with high-resolution land use have good predictive ability of identifying potential breeding sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.