Synchronization in coupled oscillators networks is a remarkable phenomenon of relevance in numerous fields. For Kuramoto oscillators the loss of synchronization is determined by a trade-off between coupling strength and oscillator heterogeneity. Despite extensive prior work, the existing sufficient conditions for synchronization are either very conservative or heuristic and approximate. Using a novel cutset projection operator, we propose a new family of sufficient synchronization conditions; these conditions rigorously identify the correct functional form of the trade-off between coupling strength and oscillator heterogeneity. To overcome the need to solve a nonconvex optimization problem, we then provide two explicit bounding methods, thereby obtaining (i) the best-known sufficient condition for unweighted graphs based on the 2-norm, and (ii) the first-known generally-applicable sufficient condition based on the ∞-norm. We conclude with a comparative study of our novel ∞-norm condition for specific topologies and IEEE test cases; for most IEEE test cases our new sufficient condition is one to two orders of magnitude more accurate than previous rigorous tests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.