Over the last few decades, a number of differential evolution (DE) algorithms have been proposed with excellent performance on mathematical benchmarks. However, like any other optimization algorithm, the success of DE is highly dependent on the search operators and control parameters that are often decided a priori. The selection of the parameter values is itself a combinatorial optimization problem. Although a considerable number of investigations have been conducted with regards to parameter selection, it is known to be a tedious task. In this paper, a DE algorithm is proposed that uses a new mechanism to dynamically select the best performing combinations of parameters (amplification factor, crossover rate, and the population size) for a problem during the course of a single run. The performance of the algorithm is judged by solving three well known sets of optimization test problems (two constrained and one unconstrained). The results demonstrate that the proposed algorithm not only saves the computational time, but also shows better performance over the state-of-the-art algorithms. The proposed mechanism can easily be applied to other population-based algorithms.
The dynamic economic dispatch problem is a high-dimensional complex constrained optimization problem that determines the optimal generation from a number of generating units by minimizing the fuel cost. Over the last few decades, a number of solution approaches, including evolutionary algorithms, have been developed to solve this problem. However, the performance of evolutionary algorithms is highly dependent on a number of factors, such as the control parameters, diversity of the population, and constraint-handling procedure used. In this paper, a self-adaptive differential evolution and a real-coded genetic algorithm are proposed to solve the dynamic dispatch problem. In the algorithm design, a new heuristic technique is introduced to guide infeasible solutions towards the feasible space. Moreover, a constraint-handling mechanism, a dynamic relaxation for equality constraints, and a diversity mechanism are applied to improve the performance of the algorithms. The effectiveness of the proposed approaches is demonstrated on a number of dynamic economic dispatch problems for a cycle of 24 h. Their simulation results are compared with each other and state-of-the-art algorithms, which reveals that the proposed method has merit in terms of solution quality and reliability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.