The applicability of Visible, Near-Infrared and Short Wave Infrared (VNIR/SWIR) hyperspectral imagery for soil property mapping decreases when surfaces are partially covered by vegetation. The objective of this research was to develop and evaluate a methodology based on the "double-extraction" technique, for clay content estimation over semi-vegetated surfaces using VNIR/SWIR hyperspectral airborne data. The "double-extraction" technique initially proposed by Ouerghemmi et al. ( 2011) consists of 1) an extraction of a soil reflectance spectrum from semi-vegetated spectra using a Blind Source Separation technique, and 2) an extraction of clay content from the soil reflectance spectrum , using a multivariate regression method. In this paper, the Source Separation approach is Semi-Blind thanks to the integration of field knowledge in Source Separation model. And the multivariate regression method is a partial least squares regression (PLSR) model. This study employed VNIR/SWIR HyMap airborne data acquired in a French Mediterranean region over an area of 24 km². Our results showed that our methodology based on the "double-extraction" technique is accurate for clay content estimation when applied to pixels under a specific Cellulose Absorption Index threshold. Finally the clay content can be estimated over around 70% of the semi-vegetated pixels of our study area, which may offer an extension of soil properties mapping, at the moment restricted to bare soils.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.