A nanocrystalline NiO@MnO2/NGO hybrid composite electrode showed specific capacitance of 1490 Fg−1 at a current density of 0.5 Ag−1 and retains 98% up to 2000 cycles indicating its good cyclic stability.
International audienceDifferent metals W, Al, Ni and Cr were evaluated as Schottky contacts on the same p-type lightly boron doped homoepitaxial diamond layer. The current-voltage (I-V) characteristics, the series resistance and the thermal stability are discussed in the range of RT to 625 K for all Schottky devices. High current densities close to 3.2 kA/cm2 are displayed and as the series resistance decreases with increasing temperature, proving the potential of diamond for high power and high temperature devices. The thermal stability of metal/diamond interface investigated with regards to the Schottky barrier height (SBH) and ideality factor n fluctuations indicated that Ni and W are thermally stable in the range of RT to 625 K. Current-voltage measurements at reverse bias indicated a maximum breakdown voltage of 70 V corresponding to an electric field of 3.75 MV/cm. Finally, these electrical measurements have been completed with mechanical adhesion tests of contact metallizations on diamond by nano-scratching technique. These studies clearly reveal Ni as a promising contact metallization for high power, high temperature and good mechanical strength diamond Schottky barrier diode applications
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.