BackgroundBreast cancer is one of the most common cancer and a leading cause of death in women. Up to date the most commonly used breast cancer cell lines are originating from Caucasians or Afro-Americans but rarely cells are being derived from other ethnic groups. Here we describe for the first time the establishment of a naturally transformed breast cancer cell line, KAIMRC1 from an Arab woman of age 62 suffering from stage IIB breast cancer (T2N1M0). Moreover, we have characterized these cells for the biological and molecular markers, induction of MAPK pathways as well as its response to different commercially available drugs and compounds.MethodsBreast cancer tissue sections were minced and cultured in media for several weeks. KAIMRC1 cells were successfully isolated from one of the primary breast tumor tissue cultures without any enzymatic digestion. To study the growth characteristics of the cells, wound healing assay, clonogenic assay, cell proliferation assays and live cell time-lapse microscopy was performed. Karyotyping, Immunophenotyping and molecular pathway specific compound treatment was also performed. A selective breast cancer gene expression panel was used to identify genes involved in the signal transduction dysregulation and malfunction of normal biological processes during breast carcinogenesis.ResultsThese cells are ER/PR-positive and HER2-negative. The epithelial nature of these cells was confirmed by flow cytometry analysis using epithelial cell markers. They are cuboidal in shape and relatively smaller in size as compared to established cell lines, MCF-7, MDA MB-231 and the normal breast cell line, MCF-10A. In normal cell culture conditions these cells showed the capability of growing both in monolayer as well as in 3-D conformation. They showed a doubling time in vitro of approximately 24 h. They exhibit a modal karyotype of 58–63,X with abnormalities in a couple of chromosomes. KAIMRC1 cells were found to be more responsive to drug treatment in vitro in comparison to the established MDA MB-231 and MCF-7 cell lines.ConclusionsIn conclusion we have isolated and characterized a new naturally immortalized breast cell line, KAIMRC1 with a potential to play a key role in opening up novel avenues towards the understanding of breast carcinoma.Electronic supplementary materialThe online version of this article (10.1186/s12885-017-3812-5) contains supplementary material, which is available to authorized users.
Disregulation of genes making up the mammalian circadian clock has been associated with different forms of cancer. This study aimed to address how the circadian clock genes behave over the course of treatment for both the acute and chronic forms of leukemia and whether any could be used as potential biomarkers as a read-out for therapeutic efficacy. Expression profiling for both core and ancillary clock genes revealed that the majority of clock genes are down-regulated in acute myeloid leukemia patients, except for Cry2, which is up-regulated towards the end of treatment. A similar process was seen in acute lymphocytic leukemia patients; however, here, Cry2 expression came back up towards control levels upon treatment completion. In addition, all of the core clock genes were down-regulated in both chronic forms of leukemia (chronic myeloid leukemia and chronic lymphocytic leukemia), except for Cry2, which was not affected when the disease was diagnosed. Furthermore, the NAD(+) – dependent protein deacetylase Sirt1 has been proposed to have a dual role in both control of circadian clock circuitry and promotion of cell survival by inhibiting apoptotic pathways in cancer. We used a pharmacological-based approach to see whether Sirt1 played a role in regulating the circadian clock circuitry in both acute and chronic forms of leukemia. Our results suggest that interfering with Sirt1 leads to a partial restoration of BMAL1 oscillation in chronic myeloid leukemia patient samples. Furthermore, interfering with Sirt1 activity led to both the induction and repression of circadian clock genes in both acute and chronic forms of leukemia, which makes it a potential therapeutic target to either augment existing therapies for chronic leukemia or to act as a means of facilitating chronotherapy in order to maximize both the effectiveness of existing therapies and to minimize therapy-associated toxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.