Semibounded symmetric operators have a distinguished self-adjoint extension, the Friedrichs extension. The eigenvalues of the Friedrichs extension are given by a variational principle that involves only the domain of the symmetric operator. Although Dirac operators describing relativistic particles are not semibounded, the Dirac operator with Coulomb potential is known to have a distinguished extension. Similarly, for Dirac-type operators on manifolds with a boundary a distinguished self-adjoint extension is characterised by the Atiyah-Patodi-Singer boundary condition. In this paper we relate these extensions to a generalisation of the Friedrichs extension to the setting of operators satisfying a gap condition. In addition we prove, in the general setting, that the eigenvalues of this extension are also given by a variational principle that involves only the domain of the symmetric operator.for k ≥ 1 are the discrete spectrum of A F in the interval (−∞, sup k≥1 λ k ), counted with multiplicities d k := # {j ≥ 1 : λ j = λ k } 2010 Mathematics Subject Classification. 49R05, 49S05, 47B25, 81Q10.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.