Protein structures evolved through a complex interplay of cooperative interactions and it is still very challenging to design new protein folds de novo. Here, we present a strategy to design self-assembling polypeptide nanostructured polyhedra, based on modularization using orthogonal dimerizing segments. We designed end experimentally demonstrated formation of the tetrahedron that self-assembles from a single polypeptide chain comprising 12 concatenated coiled-coil-forming segments separated by flexible peptide hinges. Path of the polypeptide chain is guided by the defined order of segments that traverse each of the 6 edges of the tetrahedron exactly twice, forming coiled-coil dimers with their corresponding partners. Coincidence of the polypeptide termini in the same vertex is demonstrated by reconstitution of the split fluorescent protein by the polypeptide with the correct tetrahedral topology, while polypeptides with a deleted or scrambled segment order fail to self-assemble correctly. This design platform provides the basis for construction of new topological polypeptide folds based on the set of orthogonal interacting polypeptide segments.
Bionanotechnology seeks to modify and design new biopolymers and their applications and uses biological systems as cell factories for the production of nanomaterials. Molecular self-assembly as the main organizing principle of biological systems is also the driving force for the assembly of artificial bionanomaterials. Protein domains and peptides are particularly attractive as building blocks because of their ability to form complex three-dimensional assemblies from a combination of at least two oligomerization domains that have the oligomerization state of at least two and three respectively. In the present paper, we review the application of polypeptide-based material for the formation of material with nanometre-scale pores that can be used for the separation. Use of antiparallel coiled-coil dimerization domains introduces the possibility of modulation of pore size and chemical properties. Assembly or disassembly of bionanomaterials can be regulated by an external signal as demonstrated by the coumermycin-induced dimerization of the gyrase B domain which triggers the formation of polypeptide assembly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.