Auditory feedback is important for the control of voice fundamental frequency (F0). In the present study we used neuroimaging to identify regions of the brain responsible for sensory control of the voice. We used a pitch-shift paradigm where subjects respond to an alteration, or shift, of voice pitch auditory feedback with a reflexive change in F0. To determine the neural substrates involved in these audio-vocal responses, subjects underwent fMRI scanning while vocalizing with or without pitch-shifted feedback. The comparison of shifted and unshifted vocalization revealed activation bilaterally in the superior temporal gyrus (STG) in response to the pitch shifted feedback. We hypothesize that the STG activity is related to error detection by auditory error cells located in the superior temporal cortex and efference copy mechanisms whereby this region is responsible for the coding of a mismatch between actual and predicted voice F0.
Voice control is critical to communication. To date, studies have used behavioral, electrophysiological and functional data to investigate the neural correlates of voice control using perturbation tasks, but have yet to examine the interactions of these neural regions. The goal of this study was to use structural equation modeling of functional neuroimaging data to examine network properties of voice with and without perturbation. Results showed that the presence of a pitch shift, which was processed as an error in vocalization, altered connections between right STG and left STG. Other regions that revealed differences in connectivity during error detection and correction included bilateral inferior frontal gyrus, and the primary and pre motor cortices. Results indicated that STG plays a critical role in voice control, specifically, during error detection and correction. Additionally, pitch perturbation elicits changes in the voice network that suggest the right hemisphere is critical to pitch modulation.
No abstract
Introduction: This study aims to model connectivity of neural regions involved in voice control. Here, we used structural equation modeling on a published dataset that employed the pitch shift paradigm. We hypothesized that our models would confirm differences in connectivity related to superior temporal gyrus during error processing of vocalization. Methods: We extracted time course data of eight regions included from 10 healthy subjects. A detailed description of subjects, MRI scanning procedures, imaging acquisition and data analysis can be found in Parkinson et al. 2012. Effective connectivity of regions activated during shift and no-shift paradigms was assessed using structural equation modeling techniques (AMOS version 19.0, SPSS, IBM). Results Consistent with our hypothesis, STG appears to play a crucial role in vocalization and error processing, showing increased participation of the right hemisphere during the shift condition than the no shift condition. Furthermore, left inferior frontal gyrus displays significant contribution to the modulation of vocal control through connections with PMC that change in response to the shift condition. Conclusions: Results indicated changes in connectivity of the voice network related to error detection and correction. Our models indicate hemispheric sensitivity to different elements of the auditory feedback and highlight the importance of examining network connectivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.