In this study, surface plasmon resonance (SPR) and quartz crystal microbalance (QCM) sensors were prepared for the detection of amoxicillin from the commercial and local chicken eggs by using molecular imprinting technique. Amoxicillin imprinted poly(hydroxyethyl methacrylate-methacrylic acid) polymeric film was synthesized onto the surface of the SPR and QCM chips by ultra violet polymerization to determine lower concentrations of amoxicillin. Ellipsometry, contact angle analysis, and atomic force microscopy measurements were used for the surface morphology of the polymeric film layer. The ellipsometric thickness of AMOX imprinted and nonimprinted SPR and QCM chip surfaces were measured as 35 ± 0.9 nm, 32.89 ± 1.9 nm, 30 ± 0.6 nm, and 28 ± 0.22 nm, respectively. Contact angles of bare gold surfaces, AMOX imprinted SPR and QCM chip surfaces were measured to be as 82.3°± 0.15, 79.2°± 0.14, 75.01°± 1.07, and 69.11°± 0.89, respectively. The range of linearity was measured as 0.1 to 10 ng/mL for amoxicillin imprinted SPR and QCM sensors. The maximum residue limit of AMOX in eggs is at 10 μg/kg in accordance with the "Positive List System for Agricultural Chemical Residues in Foods." The response time for the test, including adsorption, desorption, and regeneration, was approximately 45 min. The limit of detections for SPR and QCM sensors were found to be 0.0005 and 0.0023 ng/mL, respectively. The reusabilities of amoxicillin imprinted SPR and QCM sensors were observed by the equilibration-binding-regeneration. Validation studies of the AMOX imprinted SPR and QCM sensors were performed by liquid chromatography-tandem mass spectrometry.
In this study, composite polymeric cryogel cartridges were achieved by using Cd(II) imprinted poly(hydroxyethyl methacrylate N-methacryloly-(L)-cysteine methylester) beads and poly(hydroxyethyl methacrylate) cryogel cartridges with two different mole ratios of functional monomer. The N-methacryloly-(L)-cysteinemethylester was used as a functional monomer and Cd(II) 1:1 and 2:1, which were then notated as MIP1 and MIP2, respectively. Various characterization methods have confirmed the structural transformation on the MIP1 and MIP2 composite cryogel cartridges by scanning electron microscopy, Fourier-transform infrared spectroscopy-Attenuated Total Reflectance, and swelling tests. The maximum amount of Cd(II) adsorption with composite cryogel cartridges was determined by altering the Cd(II) initial concentration, temperature, and pH values. The maximum adsorption capacity of MIP1 and MIP2 composite cryogel cartridges obtained was 76.35 and 98.8 µmol/g of composite cryogels, respectively. The adsorption studies revealed that the MIP2 possessed a good adsorption performance for Cd(II). The obtained composite cryogel cartridges have a selective, reusable, and cost-friendly potential for the removal of Cd(II) from aqueous solutions, and are used many times without decreasing their adsorption capacities significantly. The Cd(II) removal rate of the MIP1 and MIP2 composite cryogel cartridges from synthetic wastewater samples was determined as 98.8%. The obtained cryogel cartridges’ adsorption material exhibited a good directional removal performance for Cd(II) from wastewater samples.
Mercury(II) ions are emerging as a result of more human activity, especially coal‐fired power plants, industrial processes, waste incineration plants, and mining. The mercury found in different forms after spreading around diffuses the nature of other living things. Although the damage to health is not yet clear, it is obvious that it is the cause of many diseases. This work detects the problem of mercury(II) ions, one of the active pollutants in wastewater. For this purpose, it is possible to detect the smallest amount of mercury(II) ions by means of the mercury(II) ions suppressed quartz crystal microbalance nanosensor developed. Zinc(II) and cadmium(II) ions are chosen as competitor elements. Developed nanosensor technology is known as the ideal method in the laboratory environment to detect mercury(II) ions from wastewater because of its low cost and precise result orientation. The range of linearity and the limit of detection are measured as 0.25 × 10
−9
–50 × 10
−9
m
. The detection limit is found to be 0.21 × 10
−9
m
. The mercury(II) ions imprinted nanosensors prepared according to the obtained experimental findings show high selectivity and sensitivity to detect mercury(II) ions from wastewater.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.