A novel and efficient one-pot system for green production of artificial lignin bio-composites has been developed. Monolignols such as sinapyl (SA) and coniferyl (CA) alcohols were linked together with caffeic acid (CafAc) affording a polymeric network similar with natural lignin. The interaction of the dissolved SA/CA with CafAc already bound on a solid support (SC2/SC6-CafAc) allowed the attachment of the polymeric product direct on the support surface (SC2/SC6-CafAc-L1 and SC2/SC6-CafAc-L2, from CA and SA, respectively). Accordingly, this procedure offers the advantage of a simultaneous polymer production and deposition. Chemically, oxi-copolymerization of phenolic derivatives (SA/CA and CAfAc) was performed with H2O2 as oxidation reagent using peroxidase enzyme (2-1B mutant of versatile peroxidase from Pleurotus eryngii) as catalyst. The system performance reached a maximum of conversion for SA and CA of 71.1 and 49.8%, respectively. The conversion is affected by the system polarity as resulted from the addition of a co-solvent (e.g., MeOH, EtOH, or THF). The chemical structure, morphology, and properties of the bio-composites surface were investigated using different techniques, e.g., FTIR, TPD-NH3, TGA, contact angle, and SEM. Thus, it was demonstrated that the SA monolignol favored bio-composites with a dense polymeric surface, high acidity, and low hydrophobicity, while CA allowed the production of thinner polymeric layers with high hydrophobicity.
Catalysts are frequently used as pelletized powdered materials, but rarely as thin films. The present work reports the use of 2D h-boron nitride on few layers defective graphene (h-BN/fl-G) films of about 10 nm thickness as base catalyst for the synthesis of benzoxazoles by coupling a 2-amino-phenol with p-substituted benzaldehydes. The synthesis of benzoxazole derivatives has aroused much interest in the last decades due to their application as potent anticancer agents against MCF-7 and MDA-MB-231 breast cancer cells. The results demonstrate that these nanometer-thick films exhibit three orders of magnitude higher activity than K 2 CO 3 taken as benchmark base catalyst. The activity and selectivity of h-BN/fl-G films depend on the nature of substituents on benzaldehyde, the solvent and reaction temperature.
A biocatalytic cascade system using a cocktail of oxidoreductase enzymes (2-1B peroxidase and M120 laccase) was designed for the allylic oxidation of (+)-α-pinene into value-added products (e.g., verbenol and verbenone). The oxidative transformation involved a two-step process as follows: (+)-α-pinene was (i) oxidized on the allylic position with H2O2 mainly assisted by 2-1B peroxidase leading to verbenol as the principal reaction product, and (ii) directed to verbenone in the presence of M120 laccase responsible for further oxidation of verbenol to verbenone. The reaction environment was ensured by the acetate buffer (0.1 M, pH = 5). Optimum values for the experimental parameters (e.g., concentration of 2-1B peroxidase, M120 laccase, and H2O2) were set up. The biocatalytic cascade process was monitored for 24 h in order to evaluate the process pathway. Maximum performance under optimum conditions was reached after 5 h incubation time (e.g., 80% (+)-α-pinene conversion and 70% yield in verbenol). Therefore, the developed biocatalytic cascade system offered promising perspectives for (+)-α-pinene valorization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.