Human cytomegalovirus (CMV) infections and relapse of disease remain major problems after allogeneic stem cell transplantation (allo-SCT), in particular in combination with CMV-negative donors or cordblood transplantations. Recent data suggest a paradoxical association between CMV reactivation after allo-SCT and reduced leukemic relapse. Given the potential of Vδ2-negative γδT cells to recognize CMV-infected cells and tumor cells, the molecular biology of distinct γδT-cell subsets expanding during CMV reactivation after allo-SCT was investigated. Vδ2(neg) γδT-cell expansions after CMV reactivation were observed not only with conventional but also cordblood donors. Expanded γδT cells were capable of recognizing both CMV-infected cells and primary leukemic blasts. CMV and leukemia reactivity were restricted to the same clonal population, whereas other Vδ2(neg) T cells interact with dendritic cells (DCs). Cloned Vδ1 T-cell receptors (TCRs) mediated leukemia reactivity and DC interactions, but surprisingly not CMV reactivity. Interestingly, CD8αα expression appeared to be a signature of γδT cells after CMV exposure. However, functionally, CD8αα was primarily important in combination with selected leukemia-reactive Vδ1 TCRs, demonstrating for the first time a co-stimulatory role of CD8αα for distinct γδTCRs. Based on these observations, we advocate the exploration of adoptive transfer of unmodified Vδ2(neg) γδT cells after allo-SCT to tackle CMV reactivation and residual leukemic blasts, as well as application of leukemia-reactive Vδ1 TCR-engineered T cells as alternative therapeutic tools.
Morbidity and mortality due to immunosuppression remain among the foremost clinical challenges in chronic lymphocytic leukemia (CLL). Although immunosuppression is considered to originate within the lymph node (LN) microenvironment, alterations in T and natural killer (NK) cells have almost exclusively been studied in peripheral blood (PB). Whereas chemoimmunotherapy further deteriorates immune function, novel targeted agents like the B-cell lymphoma 2 inhibitor venetoclax potentially spare nonmalignant lymphocytes; however, the effects of venetoclax on nonleukemic cells have not been explored. We address these unresolved issues using a comprehensive analysis of nonmalignant lymphocytes in paired LN and PB samples from untreated CLL patients, and by analyzing the effects of venetoclax-based treatment regimens on the immune system in PB samples from previously untreated and relapsed/refractory patients. CLL-derived LNs contained twice the amount of suppressive regulatory T cells (Tregs) and CLL supportive follicular T helper (Tfh) cells compared with PB. This was accompanied by a low frequency of cytotoxic lymphocytes. The expression of PD-1 by CD8+ T cells was significantly higher in LN compared with PB. Venetoclax-based treatment led to deep responses in the majority of patients, but also to decreased absolute numbers of B, T, and NK cells. Tfh cell, Treg, and PD-1+ CD8+ T cell numbers were reduced more than fivefold after venetoclax-based therapy, and overproduction of inflammatory cytokines was reduced. Furthermore, we observed restoration of NK cell function. These data support the notion that the immunosuppressive state in CLL is more prominent within the LN. Venetoclax-based regimens reduced the immunosuppressive footprint of CLL, suggesting immune recovery after the elimination of leukemic cells.
Patients with chronic lymphocytic leukemia (CLL) may be more susceptible to Coronavirus disease 2019 (COVID-19) due to age, disease, and treatment-related immunosuppression. We aimed to assess risk factors of outcome and elucidate the impact of CLL-directed treatments on the course of COVID-19. We conducted a retrospective, international study, collectively including 941 patients with CLL and confirmed COVID-19. Data from the beginning of the pandemic until March 16, 2021, were collected from 91 centers. The risk factors of case fatality rate (CFR), disease severity, and overall survival (OS) were investigated. OS analysis was restricted to patients with severe COVID-19 (definition: hospitalization with need of oxygen or admission into an intensive care unit). CFR in patients with severe COVID-19 was 38.4%. OS was inferior for patients in all treatment categories compared to untreated (p < 0.001). Untreated patients had a lower risk of death (HR = 0.54, 95% CI:0.41–0.72). The risk of death was higher for older patients and those suffering from cardiac failure (HR = 1.03, 95% CI:1.02–1.04; HR = 1.79, 95% CI:1.04–3.07, respectively). Age, CLL-directed treatment, and cardiac failure were significant risk factors of OS. Untreated patients had a better chance of survival than those on treatment or recently treated.
Acute renal failure (ARF) after myeloablative stem cell transplantation (SCT) is a well-established problem. Little is known about ARF after nonmyeloablative SCT. The aim of the present study was to assess the incidence of ARF and to analyze risk factors for ARF. Moreover, we wanted to study whether ARF influenced survival. We performed a retrospective cohort study of 150 adults who received nonmyeloablative SCT (fludarabine 30 mg/m(2)/day for 3 days and/or total-body irradiation (TBI) 200 cGy). ARF was categorized into grade 0 (no ARF), grade 1 (decrease in glomerular filtration rate >or=25% and
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.