␣-Hemolysin (HlyA) is an exotoxin secreted by some pathogenic strains of Escherichia coli that causes lysis of several mammalian cells, including erythrocytes of different species. HlyA is synthesized as a protoxin, pro-HlyA, which is activated by acylation at two internal lysines Lys-563 and Lys-689. It has been proposed that pore formation is the mechanism of cytolytic activity for this toxin, as shown in experiments with whole cells, planar lipid membranes, and liposomes, but these experiments have yielded conflicting results about the structure of the pore. In this study, HlyA cysteine replacement mutant proteins of amino acids have been labeled with Alexa-488 and Alexa-546. Fluorescence resonance energy transfer measurements, employing labeled toxin bound to sheep ghost erythrocytes, have demonstrated that HlyA oligomerizes on erythrocyte membranes. As the cytotoxic activity is absolutely dependent on acylation, we have studied the role of acylation in the oligomerization, demonstrating that fatty acids are essential in this process. On the other hand, fluorescence resonance energy transfer and the hemolytic activity decrease when the erythrocyte ghosts are cholesterol-depleted, hence indicating the role of membrane microdomains in the clustering of HlyA. Simultaneously, HlyA was found in detergent-resistant membranes. Pro-HlyA has also been found in detergent-resistant membranes, thus demonstrating that the importance of acyl chains in toxin oligomerization is the promotion of protein-protein interaction. These results change the concept of the main role assigned to acyl chain in the targeting of proteins to membrane microdomains.
This study was conducted to explore how the nature of the acyl chains of sphingomyelin (SM) influence its lateral distribution in the ternary lipid mixture SM/cholesterol/1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), focusing on the importance of the hydrophobic part of the SM molecule for domain formation. Atomic force microscopy (AFM) measurements showed that the presence of a double bond in the 24:1 SM molecule in mixtures with cholesterol (CHO) or in pure bilayers led to a decrease in the molecular packing. Confocal microscopy and AFM showed, at the meso- and nanoscales respectively, that unlike 16:0 and 24:0 SM, 24:1 SM does not induce phase segregation in ternary lipid mixtures with DOPC and CHO. This ternary lipid mixture had a nanomechanical stability intermediate between those displayed by liquid-ordered (Lo) and liquid-disordered (Ld) phases, as reported by AFM force spectroscopy measurements, demonstrating that 24:1 SM is able to accommodate both DOPC and CHO, forming a single phase. Confocal experiments on giant unilamellar vesicles made of human, sheep, and rabbit erythrocyte ghosts rich in 24:1 SM and CHO, showed no lateral domain segregation. This study provides insights into how the specific molecular structure of SM affects the lateral behavior and the physical properties of both model and natural membranes. Specifically, the data suggest that unsaturated SM may help to keep membrane lipids in a homogeneous mixture rather than in separate domains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.