The diversity and evolution of RNA viruses has been well studied in arthropods and especially in insects. However, the diversity of RNA viruses in the basal hexapods has not been analysed yet. To better understand their diversity, evolutionary histories and genome organizations, we searched for RNA viruses in transcriptome and genome databases of basal hexapods. We discovered 40 novel RNA viruses, some of which are also present as endogenous viral elements derived from RNA viruses. Here, we demonstrated that basal hexapods host 14 RNA viral clades that have been recently identified in invertebrates. The following RNA viral clades are associated with basal hexapods: Reo, Partiti-Picobirna, Toti-Chryso, Mono-Chu, Bunya-Arena, Orthomyxo, Qinvirus, Picorna-Calici, Hepe-Virga, Narna-Levi, Tombus-Noda, Luteo-Sobemo, Permutotetra and Flavi. We have found representatives of the nine RNA viral clades that are present as endogenous genomic copies in the genomes of Machilis (Monocondylia) and Catajapyx (Diplura). Our study provided a first insight into the diversity of RNA viruses in basal hexapods and demonstrated that the basal hexapods possess quite high diversity of RNA viral clades.
Honey bees play a critical role in global food production as pollinators of numerous crops. Several stressors cause declines in populations of managed and wild bee species, such as habitat degradation, pesticide exposure and pathogens. Viruses act as key stressors and can infect a wide range of species. The majority of honey bee-infecting viruses are RNA viruses of the Picornavirales order. Although some ssDNA viruses are common in insects, such as densoviruses, they have not yet been found in honey bees. Densoviruses were however found in bumblebees and ants. Here, we show that densoviruses are indeed present in the transcriptome of the eastern honey bee (<em>Apis cerana</em>) from southern China. On the basis of non-structural and structural transcripts, we inferred the genome structure of the Apis densovirus. Phylogenetic analysis has shown that this novel Apis densovirus belongs to the <em>Scindoambidensovirus</em> genus in the Densovirinae subfamily. Apis densovirus possesses ambisense genome organisation and encodes three non-structural proteins and a split VP (capsid) protein. The availability of a nearly complete Apis densovirus genome may enable the analysis of its potential pathogenic impact on honey bees. Our findings can thus guide further research into the densoviruses in honey bees and bumblebees.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.