Many research questions in fields such as personalized medicine, drug screens or systems biology depend on obtaining consistent and quantitatively accurate proteomics data from many samples. SWATH‐MS is a specific variant of data‐independent acquisition (DIA) methods and is emerging as a technology that combines deep proteome coverage capabilities with quantitative consistency and accuracy. In a SWATH‐MS measurement, all ionized peptides of a given sample that fall within a specified mass range are fragmented in a systematic and unbiased fashion using rather large precursor isolation windows. To analyse SWATH‐MS data, a strategy based on peptide‐centric scoring has been established, which typically requires prior knowledge about the chromatographic and mass spectrometric behaviour of peptides of interest in the form of spectral libraries and peptide query parameters. This tutorial provides guidelines on how to set up and plan a SWATH‐MS experiment, how to perform the mass spectrometric measurement and how to analyse SWATH‐MS data using peptide‐centric scoring. Furthermore, concepts on how to improve SWATH‐MS data acquisition, potential trade‐offs of parameter settings and alternative data analysis strategies are discussed.
Highlights d Global quantification of assembly state changes in the mitotic proteome d Improved performance over thermostability measurement of proteome states d Discovery of a mitotic disassembly intermediate of the nuclear pore complex d Introduction of SECexplorer-cc, a publicly available online platform
Protein kinases are key mediators of cellular signaling, and therefore, their activities are tightly controlled. AGC kinases are regulated by phosphorylation and by N- and C-terminal regions. Here, we studied the molecular mechanism of inhibition of atypical PKCζ and found that the inhibition by the N-terminal region cannot be explained by a simple pseudosubstrate inhibitory mechanism. Notably, we found that the C1 domain allosterically inhibits PKCζ activity and verified an allosteric communication between the PIF-pocket of atypical PKCs and the binding site of the C1 domain. Finally, we developed low-molecular-weight compounds that bind to the PIF-pocket and allosterically inhibit PKCζ activity. This work establishes a central role for the PIF-pocket on the regulation of PKCζ and allows us to envisage development of drugs targeting the PIF-pocket that can either activate or inhibit AGC kinases.
This review highlights recent developments in glycosylation analysis by modern MS in combination with CE based preseparation. Focused on CE-MS strategies aimed for glycotyping, the review addresses the detailed glycoform analysis of glycoproteins, glycopeptides, and proteoglycans. Glycoform analysis in the context of modern glycoproteomics is briefly addressed, as well. CZE, CIEF, and frontal analysis CE approaches hyphenated to high-resolution multistage MS for the detailed analysis of protein-linked glycan structures are overviewed in a comprehensive way. Advantages and limitations of various methodological approaches and techniques as well as mass spectrometric instrumentation are discussed in the particular context of glycoanalysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.