The basic mechanism of food transport in tetrapods is lingual-based. Neognathous birds use this mechanism for exploiting a large diversity of food resources, whereas paleognathous birds use cranioinertial mechanism with or without tongue involvement. Food transport in two neognathous species of toucans (Ramphastos toco and R. vitellinus) is defined as ballistic transport mechanism. Only one transport cycle is used for moving the food from the tip of the beak to the pharynx. The food is projected between jaws with similar initial velocity in both species. At the time of release, the angle between trajectory of food position and horizontal is higher in R. vitellinus with a shorter beak than in R. toco. The tongue never makes contact with the food nor is it used to expand the buccal cavity. Tongue movement is associated with throat expansion, permitting the food to reach the entrance of the esophagus at the end of the ballistic trajectory. Selection of large food items in the diet may explain the evolutionary trend of using ballistic transport in the feeding behavior of toucans, which plays a key role in ecology of tropical forest.
The most common and plesiomorphic mechanism of food transport in tetrapods is lingual-based. Neognathous birds use this mechanism for exploiting a large diversity of food resources, whereas paleognathous birds use cranioinertial mechanism with or without tongue involvement. Food transport in three hornbills' species (Aceros cassidix, A. undulatus, and Buceros hydrocorax) is defined by a ballistic transport mechanism. Only one transport cycle is used for moving the food from the tip of the beak to the pharynx. The tongue never makes contact with the food nor is it used to expand the buccal cavity. In hornbills, filmed through high-speed video, time to food release occurred between 0.11 and 0.16 sec before time to maximum gape. The ballistic curves show similar patterns. Maximum gape angle is significantly different between the three species. Each species show a different kinematic and motor pattern of head movements associated with ballistic transport. In A. undulatus, head rotation follows a continuous pattern similar to that reported earlier in toucans. A. cassidix rotates head downward at the time of maximum gape to permit food to reach the pharynx without touching the mandible. B. hydrocorax elevates the head along the transport cycle to avoid contact with the food to the cavity of the upper beak. Selection of large food items in the diet may explain the evolutionary trend of using ballistic transport in the feeding behavior of hornbills, which play a key role in tropical forest ecology by dispersing seeds.
The aim of this chapter is to provide a review with some examples showing the inter-relationship between behavioural, physiological and mechanical properties that play a key role for understanding the feeding behaviour in domestic birds. The complexity of neuromotor control of feeding performances in domestic birds is shown, using examples of galliform and anseriform birds, to determine the posture needed for feeding in relationship with the structure of the cervico-cranial system and describe the feeding cycles involving jaw and hyolingual movements. The chapter also shows how feeding behaviour in birds with various trophic systems share some basic functional characteristics of the feeding cycle suggested for tetrapods. The ability of modulating these characteristics provides the functional basis for improving the nutrition of domestic birds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.